(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. 的中點.

(1)當(dāng)時,求平面與平面的夾角的余弦值;

(2)當(dāng)為何值時,在棱上存在點,使平面?

 

【答案】

(1)(2)2

【解析】

試題分析:(1)分別取、的中點,連接、

以直線、分別為軸、軸、軸建立如圖所示的空間直角坐標系,

,則、的坐標分別為

(1,0,1)、(0,,3)、(-1,0,4),

=(-1,,2),=(-2,0,3)

設(shè)平面的法向量,

,可取         …… 3分

平面的法向量可以取           

           …… 5分

∴平面與平面的夾角的余弦值為.                  ……6分

(2)在(1)的坐標系中,,=(-1,,2),=(-2,0,-1).

上,設(shè),則

于是平面的充要條件為

由此解得,    ……10分

即當(dāng)=2時,在上存在靠近的第一個四等分點,使平面. ……12分

考點:空間向量求解二面角,判定線面垂直

點評:空間向量解決立體幾何問題的關(guān)鍵是建立合適的坐標系,找準相關(guān)點的坐標

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案