數(shù)列{an}的通項公式an=
3n-2
2n-1
,n∈N*,則a6=
 
考點:數(shù)列的概念及簡單表示法
專題:等差數(shù)列與等比數(shù)列
分析:利用通項公式即可得出.
解答: 解:∵數(shù)列{an}的通項公式an=
3n-2
2n-1
,n∈N*,
∴a6=
3×6-2
25
=
1
2

故答案為:
1
2
點評:本題考查了數(shù)列的通項公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點(-4,3),則sin(
π
2
+α)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<ax+1≤5},B={x|
x-2
2x+1
≤0}
(Ⅰ)若A⊆B,求實數(shù)a的取值范圍;
(Ⅱ)集合A,B能否相等,若能求出a的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+log3x+cosx,則f′(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex,x∈R.求f(x)圖象上在點(0,1)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義某種運算S=a?b,運算原理如流程圖所示,則式子(2tan
π
4
)?lne+lg100?(
1
3
-1的值為( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線kx+y+k+1=0與圓x2+y2+2x-2y-2=0相切,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,若f(x)+f(x+1)=2x2-2x+13.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[1,3]時,求f(x)的值域;
(3)當x∈[1,5]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(tanx)=sin2x+1,則f(tan
19π
6
)的值是(  )
A、
3
2
B、
3
2
C、
3
-2
2
D、
3
+2
2

查看答案和解析>>

同步練習冊答案