【題目】閱讀如圖的程序框圖,輸出結(jié)果S的值為(
A.﹣1008
B.1
C.﹣1
D.0

【答案】D
【解析】解:i=1<2016,S=0+cos =0, i=1+1=2<2016,S=0+cosπ=﹣1,
i=2+1=3<2016,S=﹣1+cos =﹣1,
i=3+1=4<2016,S=﹣1+cos2π=0,
i=4+1=5<2016,S=0+cos =cos =0,
…,
顯然周期是4,2016÷4=504,
∴i=2016,S=0,
i=2017>2016,結(jié)束循環(huán),輸出S=0,
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a為實(shí)數(shù),函數(shù)f(x)=x2﹣|x2﹣ax﹣2|在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,則a的取值范圍為(
A.[1,8]
B.[3,8]
C.[1,3]
D.[﹣1,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“節(jié)約用水”自古以來(lái)就是中華民族的優(yōu)良傳統(tǒng).某市統(tǒng)計(jì)局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設(shè)每天的用水量相互獨(dú)立.

(l)求在未來(lái)連續(xù)3個(gè)月里,有連續(xù)2個(gè)月的月用水量都不低于12噸且另1個(gè)月的月用水量低于4噸的概率;

(2)用表示在未來(lái)3個(gè)月里月用水量不低于12噸的月數(shù),求隨杌變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對(duì)邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,i是虛數(shù)單位,命題p:在復(fù)平面內(nèi),復(fù)數(shù)z1=a+ 對(duì)應(yīng)的點(diǎn)位于第二象限;命題q:復(fù)數(shù)z2=a﹣i的模等于2,若p∧q是真命題,則實(shí)數(shù)a的值等于(
A.﹣1或1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)的導(dǎo)函數(shù),討論的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:

溫度

21

23

24

27

29

32

產(chǎn)卵數(shù)/個(gè)

6

11

20

27

57

77

(1)若用線性回歸模型,求關(guān)于的回歸方程(精確到0.1);

(2)若用非線性回歸模型求關(guān)的回歸方程為,且相關(guān)指數(shù)

①試與(1)中的線性回歸模型相比,用說(shuō)明哪種模型的擬合效果更好.

②用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)為;相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點(diǎn). (Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A﹣SC﹣B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案