已知定義域為R的函數(shù)f(x)=ax2+2x+c的值域是[0,+∞),那么的最小值為   
【答案】分析:利用二次函數(shù)的性質(zhì)可得ac=1,且a和c都是正數(shù),把要求的式子化為(a+c)-,顯然當(dāng)a+c最小時,最小,而由基本不等式可得a+c的最小值等于2,從而得到要求式子的最小值.
解答:解:∵定義域為R的函數(shù)f(x)=ax2+2x+c的值域是[0,+∞),
∴a>0,且判別式△=4-4ac=0,∴ac=1,∴c>0.
=+===(a+c)-,
故當(dāng)a+c最小時,最。
而a+c≥2=2,當(dāng)且僅當(dāng)a=c時,等號成立,故的最小值等于 2-=1,
故答案為 1.
點評:本題主要考查二次函數(shù)的性質(zhì),基本不等式的應(yīng)用,注意檢驗等號成立的條件,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊答案