在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),=2=2.
(1)求證:;
(2)求證:∥平面;
(3)求三棱錐的體積.
(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=,AC=2.取中點(diǎn),連AF, EF,
∵PA=AC=2,∴PC⊥.
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥,又∠ACD=90°,即,
∴,∴,
∴.
∴. ∴PC⊥.
(2)證法一:取AD中點(diǎn)M,連EM,CM.則
EM∥PA.∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵M(jìn)C 平面PAB,AB平面PAB,
∴MC∥平面PAB.
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC平面EMC,∴EC∥平面PAB.
證法二:延長(zhǎng)DC、AB,設(shè)它們交于點(diǎn)N,連PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C為ND的中點(diǎn).
∵E為PD中點(diǎn),∴EC∥PN
∵EC 平面PAB,PN平面PAB,∴EC∥平面PAB. 、
(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=.、
則V=.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD與底面ABCD垂直,PD=DC,E是PC的中點(diǎn),作EF于點(diǎn)F(Ⅰ)證明PA平面EBD.
(Ⅱ)證明PB平面EFD.
(Ⅲ)求二面角的余弦值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com