求和:Sn=
1
2
+
1
4
+
1
8
+…+
1
2n
=
 
分析:根據(jù)等比數(shù)列的前n項(xiàng)和公式進(jìn)行計(jì)算即可.
解答:解:∵數(shù)列{
1
2n
}是公比q=
1
2
的等比數(shù)列.
Sn=
1
2
+
1
4
+
1
8
+…+
1
2n
=
1
2
[1-(
1
2
)n]
1-
1
2
=1-(
1
2
)n
,
故答案為:1-(
1
2
n
點(diǎn)評(píng):本題主要考查等比數(shù)列的求和,要求熟練掌握等比數(shù)列的求和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

Sn表示等差數(shù)列{an}的前n項(xiàng)的和,且S4=S9,a1=-12
(1)求數(shù)列的通項(xiàng)an及Sn
(2)求和Tn=|a1|+|a2|+…+|an|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}對(duì)n≥2,n∈N總有an=f(
1
an-1
),a1=1
;
(1)求{an}的通項(xiàng)公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿(mǎn)足:①{bn}為{
1
an
}
的子數(shù)列(即{bn}中的每一項(xiàng)都是{
1
an
}
的項(xiàng),且按在{
1
an
}
中的順序排列)②{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫(xiě)出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=
1
an2-1
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn
友情提醒:形如{
1
等差×等差
}
的求和,可使用裂項(xiàng)相消法如:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×100
=
1
2
{(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
99
-
1
100
)}=
99
200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求和Sn=12+22x+32x2+…+n2xn1,(x≠0,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}對(duì)n≥2,n∈N總有an=f(
1
an-1
),a1=1
;
(1)求{an}的通項(xiàng)公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿(mǎn)足:①{bn}為{
1
an
}
的子數(shù)列(即{bn}中的每一項(xiàng)都是{
1
an
}
的項(xiàng),且按在{
1
an
}
中的順序排列)②{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫(xiě)出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案