【題目】已知數列{an}滿足:a1=1且an+1=2an+1,n∈N* , 設bn=n(an+1),則數列{bn}的前n項和Sn= .
【答案】(n﹣1)2n+1+2
【解析】解:∵an+1=2an+1,
∴an+1+1=2(an+1),
∴數列{an+1}是等比數列,公比為2,首項為2.
∴an+1=2n ,
∴bn=n(an+1)=n2n ,
∴數列{bn}的前n項和Sn=2+2×22+3×23+…+n2n ,
2Sn=22+2×23+…+(n﹣1)2n+n2n+1 ,
∴﹣Sn=2+22+…+2n﹣n2n+1= ﹣n2n+1 ,
∴Sn=(n﹣1)2n+1+2.
所以答案是:(n﹣1)2n+1+2.
【考點精析】認真審題,首先需要了解數列的通項公式(如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式).
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數列{an}及{bn}的通項公式;
(Ⅱ)設數列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函數f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及對應的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的偶函數f(x),其導函數為f'(x),對任意x∈[0,+∞),均滿足:xf'(x)>﹣2f(x).若g(x)=x2f(x),則不等式g(2x)<g(1﹣x)的解集是( )
A.(﹣∞,﹣1)
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x0∈R使得關于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求滿足條件的實數t集合T;
(2)若m>1,n>1,且對于t∈T,不等式log3mlog3n≥t恒成立,試求m+n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=plnx+(p﹣1)x2+1.
(1)討論函數f(x)的單調性;
(2)當P=1時,f(x)≤kx恒成立,求實數k的取值范圍;
(3)證明:1n(n+1)<1+ …+ (n∈N+).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 與 (其中 )在 上的單調性正好相反,回答下列問題:
(1)對于 , ,不等式 恒成立,求實數 的取值范圍;
(2)令 ,兩正實數 、 滿足 ,求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=|2x﹣1|+|5x﹣1|
(1)求f(x)>x+1的解集;
(2)若m=2﹣n,對m,n∈(0,+∞),恒有 成立,求實數x的范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com