已知奇函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(0,1)時(shí),函數(shù)f(x)=2x,則f(log
12
23
)=
 
分析:由函數(shù)是奇函數(shù)得到f(-x)=-f(x)和f(x+2)=f(x)把則f(
log
23
1
2
)進(jìn)行變形得到
log
23
16
2
∈(0,1)時(shí)函數(shù)f(x)=2x,求出即可.
解答:解:根據(jù)對(duì)數(shù)函數(shù)的圖象可知
log
23
1
2
<0,且
log
23
1
2
=-log223
奇函數(shù)f(x)滿足f(x+2)=f(x)和f(-x)=-f(x)
則f(
log
23
1
2
)=f(-log223)=-f(log223)=-f(log223-4)=-f(
log
23
16
2
),
因?yàn)?span id="h7pvhxr" class="MathJye">
log
23
16
2
∈(0,1)=-2
log
23
16
2
=-
23
16

故答案為-
23
16
點(diǎn)評(píng):考查學(xué)生應(yīng)用函數(shù)奇偶性的能力,函數(shù)的周期性的掌握能力,以及運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( 。
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省本溪一中、莊河高中聯(lián)考高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州中學(xué)高三第二次質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北 題型:單選題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=(  )
A.ex-e-xB.
1
2
(ex+e-x
C.
1
2
(e-x-ex
D.
1
2
(ex-e-x

查看答案和解析>>

同步練習(xí)冊(cè)答案