已知i是虛數(shù)單位,則復(fù)數(shù)z=i+2i2+3i3所對應(yīng)的點是( )
A.(2,2)
B.(-2,2)
C.(-2,-2)
D.(2,-2)
【答案】分析:利用復(fù)數(shù)的虛數(shù)單位的性質(zhì),把z=i+2i2+3i3等價轉(zhuǎn)化為z=-2-2i,由此能求出復(fù)數(shù)z=i+2i2+3i3所對應(yīng)的點.
解答:解:∵z=i+2i2+3i3
=i-2-3i
=-2-2i,
∴復(fù)數(shù)z=i+2i2+3i3所對應(yīng)的點是(-2,-2).
故選C.
點評:本題考查復(fù)數(shù)的代數(shù)形式的表示法和幾何意義,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.