13.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機編號,則抽取的42人中,編號落入?yún)^(qū)間[61,140]的人數(shù)為4.

分析 根據(jù)系統(tǒng)抽樣的特點,求出組距是20,再計算樣本數(shù)據(jù)落入?yún)^(qū)間[61,120]的人數(shù).

解答 解:根據(jù)系統(tǒng)抽樣的特點得:組距應(yīng)為840÷42=20,
∴抽取的42人中,編號落入?yún)^(qū)間[61,140]的人數(shù)為:
(140-61+1)÷20=4.
故答案為:4.

點評 本題考查了系統(tǒng)抽樣方法的特征與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓(x-m)2+y2=4上存在兩點關(guān)于直線x-y-2=0對稱,若離心率為$\sqrt{2}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與圓相交,則它們的交點構(gòu)成的圖形的面積為(  )
A.1B.$\sqrt{3}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{(sinA-sinC)(a+c)}=sinA-sinB$,則角C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和sn,滿足sn=n(n-6),數(shù)列{bn}滿足${b_2}=3,{b_{n+1}}=3{b_n}(n∈{N^*})$
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)記數(shù)列{cn}滿足${c_n}=\left\{{\begin{array}{l}{{a_n},n為奇數(shù)}\\{{b_n},n為偶數(shù)}\end{array}}\right.$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出下列命題:
①已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3;
②f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則$f({{2^{\frac{1}{8}}}})>f({{{log}_2}({\frac{1}{8}})})>f{({{{({\frac{1}{8}})}^2}})_{\;}}$;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
④已知a>0,b>0,函數(shù)y=2aex+b的圖象過點(0,1),則$\frac{1}{a}+\frac{1}$的最小值是$4\sqrt{2}$.
其中正確命題的序號是①② (把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,既是偶函數(shù)又存在零點的是( 。
A.y=x2+1B.y=2|x|C.y=lnxD.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中是真命題的是( 。
①“若x2+y2≠0,則x,y不全為零”的否命題;
②“正多邊形都相似”的逆命題;
③“若m>0,則x2+x-m=0有實根”的逆否命題;
④“?x∈R,x2+x+2≤0”的否定.
A.①②③④B.①③④C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+y-4≤0\end{array}\right.$,z=x-2y,則z的取值范圍是[-3,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l經(jīng)過點M0(1,5),傾斜角為$\frac{π}{3}$,且交直線x-y-2=0于M點,則|MM0|=6$\sqrt{3}$+6.

查看答案和解析>>

同步練習(xí)冊答案