若θ是任意實數(shù),則方程x2+4y2sinθ=1所表示的曲線一定不是( 。
分析:對sinθ的取值進行討論,即可判斷方程x2+4y2sinθ=1所表示的曲線.
解答:解:方程x2+4y2sinθ=1,
當(dāng)sinθ=
1
4
時,曲線表示圓;
當(dāng)sinθ<0時,曲線表示雙曲線;
當(dāng)sinθ=0時,曲線表示直線,
θ是任意實數(shù),方程x2+4y2sinθ=1,都不含有y的一次項,曲線不表示拋物線.
故選D.
點評:本題考查方程與曲線,考查分類討論的數(shù)學(xué)思想,正確理解曲線的意義是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①對于命題P:?x∈R,x2+x+1<0,則?P:?x∈R,x2+x+1<0.
②G2=ab是三個數(shù)a、G、b成等比數(shù)列的充要條件;
③若函數(shù)y=f(x)對任意的實數(shù)x滿足f(x+1)=-f(x),則f(x)是周期函數(shù);
④如果一組數(shù)據(jù)中,每個數(shù)都加上同一個非零常數(shù),則這組數(shù)據(jù)的平均數(shù)和方差都改變.
其中正確命題的序號為
.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號為
①②
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西一模 題型:填空題

下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年陜西省五校高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則¬p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號為   

查看答案和解析>>

同步練習(xí)冊答案