【題目】如圖某空間幾何體的正視圖和俯視圖分別為邊長(zhǎng)為2的正方形和正三角形,則該空間幾何體的外接球的表面積為( )
A.
B.
C.16π
D.21π
【答案】B
【解析】解:如圖,由幾何體的三視圖知該幾何體是四棱錐S﹣ABCD, 其中ABCD是邊長(zhǎng)為2的正方形,△SBC是邊長(zhǎng)為2 的等邊三角形,
AB⊥平面SBC,
取BC中點(diǎn)F,AD中點(diǎn)E,連結(jié)SF,EF,取EF中點(diǎn)M,則MF=1,SF= ,
設(shè)該幾何體外接球的球心為O,則OM⊥面ABCD,設(shè)OM=x,
過(guò)O作OH⊥SF,交SF于H,則SH= -x,OH=MF=1,
∴OD2=OS2=R2 ,
即( )2+x2=12+( -x)2 ,
解得x= ,
∴R= = ,
∴該空間幾何體的外接球的表面積S= = .
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解簡(jiǎn)單空間圖形的三視圖的相關(guān)知識(shí),掌握畫三視圖的原則:長(zhǎng)對(duì)齊、高對(duì)齊、寬相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 右支上非頂點(diǎn)的一點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥FB,設(shè)∠ABF=θ且 ,則雙曲線離心率的取值范圍是( )
A.
B.
C.
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)共享單車在我國(guó)主要城市發(fā)展迅速.目前市場(chǎng)上有多種類型的共享單車,有關(guān)部門對(duì)其中三種共享單車方式(M方式、Y方式、F方式)進(jìn)行統(tǒng)計(jì)(統(tǒng)計(jì)對(duì)象年齡在15~55歲),相關(guān)數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性別選擇共享單車種類情況統(tǒng)計(jì)(表2)
性別 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計(jì)對(duì)象中隨機(jī)選取男女各一人,試估計(jì)男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個(gè)年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問(wèn)此結(jié)論是否正確?(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)所有高校學(xué)生進(jìn)行普通話水平測(cè)試,發(fā)現(xiàn)成績(jī)服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來(lái)抽樣出的10名學(xué)生的成績(jī).
(1)計(jì)算這10名學(xué)生的成績(jī)的均值和方差;
(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績(jī)?cè)冢?6,97)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x++3,則對(duì)于y=f(x)在x<0時(shí),下列說(shuō)法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B,P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)若四邊形OAQP是平行四邊形,
(i)當(dāng)P在單位圓上運(yùn)動(dòng)時(shí),求點(diǎn)O的軌跡方程;
(ii)設(shè)∠POA=θ(0≤θ≤2π),點(diǎn)Q(m,n),且f(θ)=m+ n.求關(guān)于θ的函數(shù)f(θ)的解析式,并求其單調(diào)增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com