如圖,在多面體ABCDE中,∠ABC=90°,∠ACB=30°,四邊形為等腰梯形,∠EAC=∠DCA=45°,AC=2ED=4,平面BCD丄平面ABE.
(I )求證:AB丄平面BCD;
(II )試求二面角C-BD-E的大。

(I )證明:延長(zhǎng)AE與CD交于F,
∵四邊形為等腰梯形,∠EAC=∠DCA=45°,
∴△ACF為等腰直角三角形
在平面BCF內(nèi)過C作CG⊥BF于G,∵平面BCD丄平面ABE,∴CG⊥平面ABF
∵AB?平面ABF,∴CG⊥AB
∵AB⊥BC,BC∩CG=C
∴AB丄平面BCD;
(II )解:設(shè)H為BF的中點(diǎn),則EH∥AB,∴EH⊥平面BCF
過H作HP⊥BD于P,則EP⊥BD,∴∠HPE為二面角的平面角的補(bǔ)角

∵EH=1,HP=
∴EP=
∴cos∠HPE=
∴∠HPE=60°
∴二面角C-BD-E的大小為120°.
分析:(I )延長(zhǎng)AE與CD交于F,則△ACF為等腰直角三角形,在平面BCF內(nèi)過C作CG⊥BF于G,可得CG⊥平面ABF,從而可得CG⊥AB,又AB⊥BC,利用線面垂直的判定,可證AB丄平面BCD;
(II )設(shè)H為BF的中點(diǎn),過H作HP⊥BD于P,則可得∠HPE為二面角的平面角的補(bǔ)角,由此可求二面角C-BD-E的大。
點(diǎn)評(píng):本題考查線面垂直,考查面面角,解題的關(guān)鍵是掌握線面垂直的判定方法,正確作出面面角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1,AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
(3)若BC=2,求幾何體ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案