在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類比這一結(jié)論,在三棱錐P-ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P-ABC的高為h,則結(jié)論為    
【答案】分析:立體幾何中的類比推理主要是基本元素之間的類比:平面?空間,點?點或直線,直線?直線或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關(guān)系式類比立體中兩兩垂直的棱的三棱錐中邊與高的關(guān)系即可.
解答:解:∵PA、PB、PC兩兩互相垂直,∴PA⊥平面PBC.
由已知有:PD=,h=PO=,
,即
故答案為:+=
點評:類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則
1
a2
+
1
b2
=
1
h2
.類比這一結(jié)論,在三棱錐P-ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P-ABC的高為h,則結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類比這一結(jié)論,在三棱錐P―ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P―ABC的高為h,則結(jié)論為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩點互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省鄭州外國語學(xué)校高二下學(xué)期期中考試數(shù)學(xué)卷(文) 題型:填空題

在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為______________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010屆高三數(shù)學(xué)每周精析精練:選考部分 題型:填空題

 在平面幾何中有:Rt△ABC的直角邊分別為a,b,斜邊上的高為h,則.類比這一結(jié)論,在三棱錐P—ABC中,PA、PB、PC兩兩互相垂直,且PA=a,PB=b,PC=c,此三棱錐P—ABC的高為h,則結(jié)論為______________

 

查看答案和解析>>

同步練習(xí)冊答案