已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線與橢圓相切,直線軸交于點(diǎn),當(dāng)為何值時(shí)的面積有最小值?并求出最小值.
(1)
(2)時(shí),有最小值.

試題分析:解:(Ⅰ)設(shè)方程為,拋物線的焦點(diǎn)為,
.
雙曲線的離心率  所以,得
∴橢圓C的方程為.                 4分
(Ⅱ)設(shè)直線的方程為,由對稱性不妨設(shè)
得:    6分
依題意,得: 8分
,令,得,即
 10分(用表示一樣給分)

當(dāng)且僅當(dāng)時(shí)取等號(hào).                      12分
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013606919462.png" style="vertical-align:middle;" />故時(shí),有最小值.           13分
點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

為橢圓上一點(diǎn),為兩焦點(diǎn),,則橢圓的離心率        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左焦點(diǎn)為F
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為的中垂線與軸和軸分別交于兩點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線l為圓的一條切線,且經(jīng)過橢圓C的右焦點(diǎn),直線l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點(diǎn)關(guān)于l的對稱點(diǎn)是否在橢圓上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的右焦點(diǎn)的直線交橢圓于于兩點(diǎn),令,則。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(diǎn),為其右焦點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓相交于、兩點(diǎn)(點(diǎn)兩點(diǎn)之間),若的面積相等,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓)經(jīng)過點(diǎn),其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線交橢圓于兩點(diǎn),且的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊答案