分析 (I)利用導(dǎo)數(shù)的運(yùn)算法則得出f′(x),通過對a分類討論,利用一元二次方程與一元二次不等式的關(guān)系即可判斷出其單調(diào)性;
(Ⅱ)令g(x)=f(x)-$\frac{1}{x}$+e1-x=ax2-lnx-$\frac{1}{x}$+e1-x-a,可得g(1)=0,從而g′(1)≥0,解得得a≥$\frac{1}{2}$,當(dāng)a≥$\frac{1}{2}$時(shí),可得F′(x)在a≥$\frac{1}{2}$時(shí)恒大于0,即F(x)在x∈(1,+∞)單調(diào)遞增.由F(x)>F(1)=2a-1≥0,可得g(x)也在x∈(1,+∞)單調(diào)遞增,進(jìn)而利用g(x)>g(1)=0,可得g(x)在x∈(1,+∞)上恒大于0,綜合可得a所有可能取值.
解答 解:(Ⅰ)由題意,f′(x)=2ax-$\frac{1}{x}$=$\frac{2{ax}^{2}-1}{x}$,x>0,
①當(dāng)a≤0時(shí),2ax2-1≤0,f′(x)≤0,f(x)在(0,+∞)上單調(diào)遞減.
②當(dāng)a>0時(shí),f′(x)=$\frac{2a(x+\frac{1}{2a})(x-\frac{1}{2a})}{x}$,當(dāng)x∈(0,$\frac{1}{2a}$)時(shí),f′(x)<0,
當(dāng)x∈($\frac{1}{2a}$,+∞)時(shí),f′(x)>0,
故f(x)在(0,$\frac{1}{2a}$)上單調(diào)遞減,在($\frac{1}{2a}$,+∞)上單調(diào)遞增.
(Ⅱ)原不等式等價(jià)于f(x)-$\frac{1}{x}$+e1-x>0在x∈(1.+∞)上恒成立,
一方面,令g(x)=f(x)-$\frac{1}{x}$+e1-x=ax2-lnx-$\frac{1}{x}$+e1-x-a,
只需g(x)在x∈(1.+∞)上恒大于0即可,
又∵g(1)=0,故g′(x)在x=1處必大于等于0.
令F(x)=g′(x)=2ax-$\frac{1}{x}$+$\frac{1}{{x}^{2}}$-e1-x,g′(1)≥0,可得a≥$\frac{1}{2}$,
另一方面,當(dāng)a≥$\frac{1}{2}$時(shí),F(xiàn)′(x)=2a+$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$+e1-x≥1+$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$+e1-x=$\frac{{x}^{3}+x-2}{{x}^{3}}$+e1-x,
∵x∈(1,+∞),故x3+x-2>0,又e1-x>0,故F′(x)在a≥$\frac{1}{2}$時(shí)恒大于0.
∴當(dāng)a≥$\frac{1}{2}$時(shí),F(xiàn)(x)在x∈(1,+∞)單調(diào)遞增.
∴F(x)>F(1)=2a-1≥0,故g(x)也在x∈(1,+∞)單調(diào)遞增.
∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.
綜上,a≥$\frac{1}{2}$.
點(diǎn)評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、分類討論的思想方法等是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | r>$\frac{1}{2}$ | B. | $\frac{1}{2}$<r<$\frac{3}{2}$ | C. | r<$\frac{3}{2}$ | D. | r≥$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.68 | B. | 0.72 | C. | 0.7 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | b<c<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | 7 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,+∞) | B. | (-∞,0)∪(4,+∞) | C. | (0,4) | D. | (-∞,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com