正項(xiàng)數(shù)列{an}滿足:它的平方數(shù)列{an2}是公差為1,第4項(xiàng)為4的等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列bn=
1
an+1+an
的前n項(xiàng)和為Sn,求Sn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)條件確定a1,構(gòu)造等差數(shù)列即可求數(shù)列{an}的通項(xiàng)公式;
(2)求出bn的通項(xiàng)公式,利用分母有理化,進(jìn)行求和.
解答: 解:(1)∵數(shù)列{an2}是公差為1,第4項(xiàng)為4的等差數(shù)列,
∴a42=a12+(4-1)×1=4,即a12=1,
即數(shù)列{
a
2
n
}是以1為首項(xiàng),1為公差的等差數(shù)列,則
a
2
n
=1+(n-1)=n,
即an
n

∵正項(xiàng)數(shù)列{an},
∴an=
n

(2)bn=
1
an+1+an
=
1
n+1
+
n
=
n+1
-
n

則Sn=(
2
-1
)+(
3
-
2
)+…+
n+1
-
n
=
n+1
-1.
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式,以及利用分母有理化進(jìn)行數(shù)列求和,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
1
x
+(1-a)lnx.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若a≤0,討論函數(shù)求f(x)的單調(diào)性;
(Ⅲ)若關(guān)于x的方程f(x)=ax在(0,1)上有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
2
-
2
x
6的二項(xiàng)展開式中,x2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2-
1
2x
9的展開式中x9的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點(diǎn),AC=BC=BB1
(Ⅰ)求證:BC1∥平面CA1D;
(Ⅱ)求證:BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:f(x)=x+
4
x
是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α的終邊過點(diǎn)(-1,-2);
(1)求cosα及tanα的值.
(2)化簡(jiǎn)并求
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=2-(x2-2x+2)i,x∈R,則復(fù)數(shù)z對(duì)應(yīng)點(diǎn)在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面上畫一個(gè)邊長(zhǎng)為4cm的正方形,把一枚直徑為1.8cm的一分硬幣任意擲在這個(gè)平面上(且保證硬幣的中心投擲在正方形內(nèi)部),硬幣不與正方形的四條邊相碰的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案