有如下四個命題:
①甲乙兩組數(shù)據(jù)分別為甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67,則甲乙的中位數(shù)分別為45和44.
②相關(guān)系數(shù)r=-0.83,表明兩個變量的相關(guān)性較弱.
③若由一個2×2列聯(lián)表中的數(shù)據(jù)計算得K2的觀測值k≈4.103,那么有95%的把握認(rèn)為兩個變量有關(guān).
④用最小二乘法求出一組數(shù)據(jù)(xi,yi),(i=1,…,n)的回歸直線方程
y
=
b
x+
a
后要進(jìn)行殘差分析,相應(yīng)于數(shù)據(jù)(xi,yi),(i=1,…,n)的殘差是指
ei
=yi-(
b
xi+
a
).
以上命題“錯誤”的序號是
 
考點:獨立性檢驗的基本思想,最小二乘法
專題:綜合題,概率與統(tǒng)計
分析:利用中位數(shù)、相關(guān)系數(shù)、K2的觀測值、殘差分析,即可得出結(jié)論.
解答: 解:①甲乙兩組數(shù)據(jù)分別為甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67,則甲乙的中位數(shù)分別為45和
42+46
2
=44,正確;
②相關(guān)系數(shù)r=-0.83,表明兩個變量的相關(guān)性較弱,不正確.
③若由一個2×2列聯(lián)表中的數(shù)據(jù)計算得K2的觀測值k≈4.103,那么有95%的把握認(rèn)為兩個變量有關(guān),正確.
④用最小二乘法求出一組數(shù)據(jù)(xi,yi),(i=1,…,n)的回歸直線方程
y
=
b
x+
a
后要進(jìn)行殘差分析,相應(yīng)于數(shù)據(jù)(xi,yi),(i=1,…,n)的殘差是指
ei
=yi-(
b
xi+
a
),正確.
故答案為:②.
點評:本題考查中位數(shù)、相關(guān)系數(shù)、K2的觀測值、殘差分析,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,已知定點A1(-
7
,0),A2
7
,0),動點B1(0,m),B2(0,
1
m
),(m∈R且m≠0),直線A1B1與直線A2B2的交點N的軌跡為C.
(1)求軌跡C的方程;
(2)過點M(
4
3
,0)的直線l交軌跡C于P、Q兩點,以PQ為直徑的圓與y軸相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱底面積為5πcm2,母線長12cm,則圓柱體的全面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足:存在正整數(shù)T,對于任意正整數(shù)n都有an+T=an成立則稱數(shù)列{an}為周期數(shù)列,周期為T,已知數(shù)列{an}滿足a1=m(m>0),an+1=
an-1,an>1
1
an
,0<an≤1
則,有下列結(jié)論:
①若a3=4,則m可以取3個不同的值;
②若m=
2
,則數(shù)列{an}是周期為3的數(shù)列;
③對任意的T∈N*且T≥2,存在m>1,使得{an}是周期為T的數(shù)列;
④存在m∈Q且m≥2,使得數(shù)列{an}是周期數(shù)列.
其中正確的結(jié)論有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列從集合A到集合B的對應(yīng)中是映射的有
 
;其中一一映射的有
 

①A=N*,B={0,1,2,3,4},f:除以5的余數(shù);
②A={x|x≥0},B={y|y≥0},f:x→y=
x
;
③A=N*,B={-1,1,2,-2},f:x→(-1)x
④A=Z,B=R,f:x→
2
x

⑤A=N*,B=R,f:x→
x2

⑥A={平面α內(nèi)的圓},B={平面α內(nèi)的矩形},f:A中圓的內(nèi)接矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:x2+
y2
b2
=1(0<b<1)的上頂點為B(0,b),橢圓C上到點B的距離最大的點恰為下頂點(0,-b),則橢圓C的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題,其中正確的命題有
 
;(將所有正確命題的序號都填在橫線上)
①由曲線y=x2與直線y=2x圍成的封閉區(qū)域的面積為
4
3
;
②把5本不同的書分給4個人,每人至少1本,則不同的分法種數(shù)為
A
4
5
A
1
4
=480種;
③函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x+1)=-f(x),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱;
④已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù),設(shè)a=f(ln
1
3
),b=f(log43),c=f(0.4-1.2),則c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l為直線,α,β是兩個不同的平面,下列命題中正確的是( 。
A、若l∥α,l∥β,則α∥β
B、若α∥β,l∥α,則l∥β
C、若l⊥α,l∥β,則α⊥β
D、若α⊥β,l∥α,則l⊥β

查看答案和解析>>

同步練習(xí)冊答案