已知圓C:x2+y2=9,點(diǎn)A(-5,0),直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;

(2)若在直線OA上(O為坐標(biāo)原點(diǎn))存在定點(diǎn)B(不同于點(diǎn)A),滿足:對于圓C上任意一點(diǎn)P,都有為一常數(shù),求所有滿足條件的點(diǎn)B的坐標(biāo).

答案:
解析:

  解:(1)設(shè)所求直線方程為,即,又直線與圓相切,所以,得,所以所求直線方程為

  (2)假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,所以,將代入,得

  ,即恒成立,所以解得(舍去),

  所以存在點(diǎn)對于圓上任意一點(diǎn),都有為常數(shù)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-8x+y2-9=0,過點(diǎn)M(1,3)作直線交圓C于A,B兩點(diǎn),△ABC面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2ax+y2-10y+a2=0(a>0)截直線x+y-5=0的弦長為5
2
;
(1)求a的值;
(2)求過點(diǎn)P(10,15)的圓的切線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2x+y2-2=0,點(diǎn)A(-2,0)及點(diǎn)B(4,a),從A點(diǎn)觀察B點(diǎn),要使視線不被圓C擋住,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2x+y2=0,直線l:x+y-4=0.
(1)若直線l′⊥l且被圓C截得的弦長為
3
,求直線l′的方程;
(2)若點(diǎn)P是直線l上的動點(diǎn),PA、PB與圓C相切于點(diǎn)A、B,求四邊形PACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2ax+y2-4y+a2=0(a>0)及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長為2
2
時(shí).
(Ⅰ)求a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.

查看答案和解析>>

同步練習(xí)冊答案