當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+a+1=0恒過(guò)定點(diǎn)C,則以C為圓心且與y軸相切的圓的方程是________.

(x+1)2+(y-2)2=1.
分析:直線即 a(x+1)+(-x-y+1)=0,定點(diǎn)C(圓心)的坐標(biāo)是方程組的解,推出半徑可得圓的方程.
解答:直線(a-1)x-y+a+1=0,即 a(x+1)+(-x-y+1)=0,定點(diǎn)C的坐標(biāo)是方程組的解,
∴定點(diǎn)C的坐標(biāo)是(-1,2),以C為圓心且與y軸相切的圓的半徑為1,
所以所求圓的方程是 (x+1)2+(y-2)2=1,
故答案為:(x+1)2+(y-2)2=1.
點(diǎn)評(píng):本題主要考查直線過(guò)定點(diǎn)問(wèn)題,求圓的方程,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y
;
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-
1
4a

④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+a+1=0恒過(guò)定點(diǎn)C,則以C為圓心,半徑為
5
的圓的方程為( 。
A、x2+y2-2x+4y=0
B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0
D、x2+y2-2x-4y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a為任意實(shí)數(shù)時(shí),直線(2a+3)x+y-4a+2=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P的拋物線的標(biāo)準(zhǔn)方程是(  )
A、x2=32y或y2=-
1
2
x
B、x2=-32y或y2=
1
2
x
C、y2=32x或x2=-
1
2
y
D、y2=-32x或x2=
1
2
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下4個(gè)命題,其中所有正確結(jié)論的序號(hào)是
(1)(3)
(1)(3)

(1)當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P則焦點(diǎn)在y軸上且過(guò)點(diǎn)P拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y.
(2)若直線l1:2kx+(k+1)y+1=0與直線l2:x-ky+2=0垂直,則實(shí)數(shù)k=1;
(3)已知數(shù)列{an}對(duì)于任意p,q∈N*,有ap+aq=ap+q,若a1=
1
9
,則a36=4
(4)對(duì)于一切實(shí)數(shù)x,令[x]大于x最大整數(shù),例如:[3.05]=3,[
5
3
]=1,則函數(shù)f(x)=[x]稱(chēng)為高斯函數(shù)或取整函數(shù),若an=f(
n
3
)(n∈N*),Sn為數(shù)列{an}的前n項(xiàng)和,則S50=145.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則焦點(diǎn)在y軸上且過(guò)點(diǎn)P的拋物線的標(biāo)準(zhǔn)方程是
x2=
4
3
y
x2=
4
3
y

查看答案和解析>>

同步練習(xí)冊(cè)答案