設(shè)x為實(shí)數(shù),求證:1+2x4≥x2+2x3
考點(diǎn):不等式的證明
專題:證明題
分析:將所證的不等式作差后化積,通過判斷符號(hào)即可證得結(jié)論成立.
解答: 證明:∵x為實(shí)數(shù),
∴1+2x4-x2-2x3
=2x3(x-1)-(x-1)(x+1)
=(x-1)(2x3-x-1)
=(x-1)[(x-1)(2x2+2x+1)]
=(x-1)2[2(x+
1
2
)
2
+
1
2
]≥0,
∴1+2x4≥x2+2x3
點(diǎn)評(píng):本題考查不等式的證明,著重考查作差法的應(yīng)用,作差后化積是關(guān)鍵,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖所示的程序框圖,輸入正整數(shù)N(N≥2)和實(shí)數(shù)a1,a2,…,an,輸出A,B,則(  )
A、A和B分別是a1,a2,…,an中最小的數(shù)和最大的數(shù)
B、A和B分別是a1,a2,…,an中最大的數(shù)和最小的數(shù)
C、
A+B
2
為a1,a2,…,an的算術(shù)平均數(shù)
D、A+B為a1,a2,…,an的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|+2|x+1|+1.
(Ⅰ)求不等式f(x)<6的解集;
(Ⅱ)若直線y=(
1
3
a(a∈R)與函數(shù)y=f(x)的圖象恒有公共點(diǎn),求實(shí)數(shù)a的取值區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga(2ax-1)(a>0,且a≠0),求:
(1)函數(shù)f(x)的零點(diǎn);        
(2)函數(shù)f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
2an+3
,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=9x-2×3x+4,x∈[0,2]
(1)設(shè)t=3x,x∈[0,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解高一年級(jí)學(xué)生的身高情況,某校按10%的比列對(duì)全校800名高一年級(jí)學(xué)生按性別進(jìn)行抽樣調(diào)查,得到如下頻數(shù)分布表:
表1:男生身高頻數(shù)分布表
身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
頻數(shù) 2 5 14 13 4 2
表2:女生身高頻數(shù)分布表
身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
頻數(shù) 2 12 16 6 3 1
(1)分別估計(jì)高一年級(jí)男生和女生的平均身高;
(2)在樣本中,從身高180cm以上的男生中任選2人,求至少有一人身高在185cm以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中點(diǎn).
(Ⅰ)求證:AB∥平面SCD;
(Ⅱ)求證:SN⊥平面ABCD;
(Ⅲ)在棱SC上是否存在一點(diǎn)P,使得平面PBD⊥平面ABCD?若存在,求出
SP
PC
的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≤3
x+y-3≥0
x-y+1≥0
,則x2+y2的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案