若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,S1,S2,S4成等比數(shù)列,且S2=4,設(shè)數(shù)學(xué)公式,則新數(shù)列{bn}的前n項(xiàng)和為_(kāi)_______.


分析:設(shè)等差數(shù)列{an}的公差為d,由已知可解得首項(xiàng)和d可得其通項(xiàng),進(jìn)而可得數(shù)列{bn}的通項(xiàng)公式,由其特點(diǎn)可用裂項(xiàng)相消法可得結(jié)果.
解答:設(shè)等差數(shù)列{an}的公差為d(d≠0)
由等差數(shù)列的求和公式可得:S2=2a1+d=4,①
S4==8+4d,
又S1,S2,S4成等比數(shù)列,故16=a1(8+4d) ②
綜合①②解得a1=1,d=2,可得an=2n-1
所以=
故數(shù)列{bn}的前n項(xiàng)和為)=
故答案為:
點(diǎn)評(píng):本題為等差等比數(shù)列的綜合應(yīng)用,求對(duì)數(shù)列的通項(xiàng)并變形為裂項(xiàng)相消的形式是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.
(Ⅰ)求數(shù)列S1,S2,S4的公比.
(Ⅱ)若S2=4,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.
(1)求等比數(shù)列S1,S2,S4的公比;
(2)若S2=4,求{an}的通項(xiàng)公式;
(3)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
m
20
對(duì)所有n∈N*都成立的最大正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.
(1)求等比數(shù)列S1,S2,S4的公比; 
(2)若S2=4,求{an}的通項(xiàng)公式;
(3)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
m
20
對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,則S1,S2,S4成等比數(shù)列.
(1)求數(shù)列S1,S2,S4的公比;
(2)若S2=4,求{an}的通項(xiàng)公式;
(3)在(2)條件下,若bn=an-14,求{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,S1,S2,S4成等比數(shù)列,且S2=4,設(shè)bn=
1
anan+1
,則新數(shù)列{bn}的前n項(xiàng)和為
n
2n+1
n
2n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案