如圖,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點.
(1)求證:CN⊥AB1;
(2)求證:CN//平面AB1M.
(1)如下(2)如下
【解析】
試題分析:證明:(1)∵三棱柱ABC-A1B1C1中CC1⊥底面ABC,
∴BB1⊥平面ABC, ∴BB1⊥CN.
∵AC=BC,N是AB的中點,∴CN⊥AB.
又∵AB∩BB1=B,∴CN⊥平面AB B1A1,∴CN⊥AB1.
(2)(方法一)連結(jié)A1B交AB1于P.∵三棱柱ABC-A1B1C1,
∴P是A1B的中點.∵M,N分別是CC1,AB的中點,
∴NP // CM,且NP = CM,∴四邊形MCNP是平行四邊形,
∴CN//MP.∵CN平面AB1M,MP平面AB1M,
∴CN //平面AB1M.
(方法二)取BB1中點P,連結(jié)NP,CP.
∵N,P分別是AB,BB1的中點,∴NP //AB1.
∵NP平面AB1M,AB1平面AB1M,
∴NP //平面AB1M.同理 CP //平面AB1M.
∵CP∩NP =P,∴平面CNP //平面AB1M.
∵CN平面CNP,∴CN //平面AB1M.
考點:直線與平面平行的判定定理;直線與平面垂直的判定定理
點評:直線與平面平行、垂直的判定定理是常考知識點。在證明時,需結(jié)合定理的條件寫,不可憑自己的主觀意識去寫。
科目:高中數(shù)學(xué) 來源: 題型:
A、3:2 | B、7:5 | C、8:5 | D、9:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
AN |
AB |
CM |
CC1 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com