精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F,右準(zhǔn)線(xiàn)與x軸交于E點(diǎn),若橢圓的離心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若過(guò)F的直線(xiàn)交橢圓于A,B兩點(diǎn),且
OA
+
OB
與向量
m
=(4,-
2
)
共線(xiàn)(其中O為坐標(biāo)原點(diǎn)),求
OA
OB
的夾角.
分析:(1)由題意知
c
a
=
2
2
a2
c
-c=1
,由此可求出a,b的值.
(2)設(shè)直線(xiàn)AB:y=k(x-1),A(x1,y1),B(x2,y2),則
y=k(x-1)
x2
2
+y2=1
消去y,得(1+2k2)x2-4k2x+2(k2-1)=0,然后結(jié)合題意利用根與系數(shù)和關(guān)系進(jìn)行求解.
解答:解:(1)由題意知
c
a
=
2
2
,
a2
c
-c=1,解得a=
2
,c=1,從而b=1.

(2)由(1)知F(1,0),顯然直線(xiàn)不垂直于x軸,可設(shè)直線(xiàn)AB:y=k(x-1),
A(x1,y1),B(x2,y2),則
y=k(x-1)
x2
2
+y2=1
消去y,得(1+2k2)x2-4k2x+2(k2-1)=0,
x1+x2=
4k2
1+2k2
,x1x2=
2(k2-1)
1+2k2
,y1+y2=k(x1-1)+k(x2-1)
=
-2k
1+2k2
,
于是
OA
+
OB
=(
4k2
1+2k2
,-
2k
1+2k2
)
,
依題意:
4k2
1+2k2
4
=
-2k
1+2k2
-
2
,故k=
2
,或k=0(舍)
y1y2=k(x1-1)k(x2-1)=-
k2
1+2k2
,故
OA
OB
=x1x2+y1y2=0
,
所以
OA
OB
的夾角為90°.
點(diǎn)評(píng):本題綜合考查橢圓的性質(zhì)及應(yīng)用和直線(xiàn)與橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答,避免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線(xiàn)l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線(xiàn)l恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線(xiàn)l交橢圓于C、D兩點(diǎn),記直線(xiàn)AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線(xiàn)l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過(guò)點(diǎn)M(2,1),直線(xiàn)y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過(guò)右焦點(diǎn)做垂直于x軸的直線(xiàn)與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線(xiàn)l:y=1,過(guò)M任作一條不與y軸重合的直線(xiàn)與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線(xiàn)l上的射影,AB的中垂線(xiàn)與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過(guò)F作y軸的平行線(xiàn)交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案