【題目】ABC,A,B,C所對(duì)的邊分別為a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面積S;

(2)DAC的中點(diǎn),cosB=,BD=,ABC的三邊長(zhǎng).

【答案】(1);(2).

【解析】

1)正弦定理化邊為角,由兩角和的正弦公式及誘導(dǎo)公式,得,結(jié)合已知c=1,sinC=,及正弦定理可得,從而可求得三角形面積;

2)由(1,再由,代入后由正弦定理得關(guān)系,中用余弦定理可得的一個(gè)關(guān)系式,然后利用,分別應(yīng)用余弦定理又可得的一個(gè)關(guān)系,聯(lián)立后可解得

1)由正弦定理,得:

,又,

,

,

所以

2)∵,∴

由(1,∴,∴,.①

設(shè),則中,,中,,兩式相加得,②

中,,③

由①②③聯(lián)立,解得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),,(其中表示a、b中的較大數(shù))為、兩點(diǎn)的切比雪夫距離”.

1)若,Q為直線(xiàn)上動(dòng)點(diǎn),求P、Q兩點(diǎn)切比雪夫距離的最小值;

2)定點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,請(qǐng)求出P點(diǎn)所在的曲線(xiàn)所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿(mǎn)意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿(mǎn)意度評(píng)分值在[6080)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項(xiàng)公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,射線(xiàn)交曲線(xiàn)于點(diǎn),傾斜角為的直線(xiàn)過(guò)線(xiàn)段的中點(diǎn)且與曲線(xiàn)交于、兩點(diǎn).

(1)求曲線(xiàn)的直角坐標(biāo)方程及直線(xiàn)的參數(shù)方程;

(2)當(dāng)直線(xiàn)傾斜角為何值時(shí),取最小值,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用勝制(即先勝局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.

1)求甲以獲勝的概率;

2)求乙獲勝且比賽局?jǐn)?shù)多于局的概率;

3)求比賽局?jǐn)?shù)的分布列,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為,為橢圓的左頂點(diǎn),為橢圓上異于的兩個(gè)動(dòng)點(diǎn),直線(xiàn)與直線(xiàn)分別交于,兩點(diǎn).

1)求橢圓的方程;

2)若的面積之比為,求的坐標(biāo);

3)設(shè)直線(xiàn)與軸交于點(diǎn),若,,三點(diǎn)共線(xiàn),判斷的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為的透明密閉的正方形容器中,裝有容器總體積一半的水(不計(jì)容器壁的厚度),將該正方體容器繞旋轉(zhuǎn),并始終保持所在直線(xiàn)與水平平面平行,則在旋轉(zhuǎn)過(guò)程中容器中水的水面面積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)均為的三棱柱中,點(diǎn)在平面內(nèi)的射影的交點(diǎn),、分別為,的中點(diǎn).

(1)求證:四邊形為正方形;

(2)求直線(xiàn)與平面所成角的正弦值;

(3)在線(xiàn)段上是否存在一點(diǎn),使得直線(xiàn)與平面沒(méi)有公共點(diǎn)?若存在求出的值.(該問(wèn)寫(xiě)出結(jié)論即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案