分析 由函數(shù)的最值求出A、B,由周期求出ω,由特殊點的坐標求出φ的值,可得f(x)的解析式,從而求得f(π)的值.
解答 解:由函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分圖象,
可得A+B=4,-A+B=0,$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,
求得B=2,A=2,ω=2,∴f(x)=2sin(2x+φ)+2.
再根據(jù)圖象過點($\frac{5π}{12}$,2),可得 sin(2•$\frac{5π}{12}$+φ)=0,∴φ=$\frac{π}{6}$,
f(x)=2sin(2x+$\frac{π}{6}$)+2,∴f(π)=2sin(2π+$\frac{π}{6}$)+2=3,
故答案為:3.
點評 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A、B,由周期求出ω,由特殊點的坐標求出φ的值,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com