(14分) 已知二次函數(shù)為偶函數(shù),函數(shù)的圖象與直線y=x相切.
(1)求的解析式
(2)若函數(shù)上是單調(diào)減函數(shù),那么:
①求k的取值范圍;
②是否存在區(qū)間[m,n](m<n,使得在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請求出區(qū)間[m,n];若不存在,請說明理由.年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2009廣東卷理)(本小題滿分14分)
已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且在處取得極小值.設(shè).
(1)若曲線上的點(diǎn)到點(diǎn)的距離的最小值為,求的值;
(2)如何取值時,函數(shù)存在零點(diǎn),并求出零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知二次函數(shù)滿足條件:=,且方程=有等根。
(Ⅰ)求的解析式;
(Ⅱ)是否存在實(shí)數(shù)m、n(m<n),使的定義域和值域分別是[m,n]和[3m,3n]?如果存在,求出m、n的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分14分)已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高州市高三上學(xué)期16周抽考數(shù)學(xué)文卷 題型:解答題
(本小題共14分)
已知二次函數(shù),f(x+1)為偶函數(shù),函數(shù)f(x)的圖象與直線y=x相切.
(1)求f(x)的解析式;
(2)若函數(shù)在上是單調(diào)減函數(shù),那么:求k的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省三明市高一第一學(xué)期聯(lián)合命題考試數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知二次函數(shù)的圖象過點(diǎn),且函數(shù)對稱軸方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),求在區(qū)間上的最小值;
(Ⅲ)探究:函數(shù)的圖象上是否存在這樣的點(diǎn),使它的橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com