【題目】設(shè)定義在[﹣2,2]上的函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,且f(1﹣m)<f(3m).
(1)若函數(shù)f(x)在區(qū)間[﹣2,2]上是奇函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[﹣2,2]上是偶函數(shù),求實(shí)數(shù)m的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)由函數(shù)為奇函數(shù)可得在區(qū)間上單調(diào)遞減,將不等式
轉(zhuǎn)化成進(jìn)行求解;
(2)由題意可得函數(shù)在上遞增,在上遞減,將不等式
轉(zhuǎn)化成進(jìn)行求解。
試題解析:
(1)∵函數(shù)f(x)在區(qū)間[﹣2,2]上是奇函數(shù)且在區(qū)間[0,2]上單調(diào)遞減,
∴函數(shù)f(x)在[﹣2,2]上單調(diào)遞減,
∵
∴,
解得。
∴實(shí)數(shù)m的取值范圍。
(2)∵函數(shù)f(x)在區(qū)間[﹣2,2]上是偶函數(shù)且在區(qū)間[0,2]上單調(diào)遞減,
∴函數(shù)f(x)在[﹣2,0]上單調(diào)遞增,
∵
∴,
解得。
∴實(shí)數(shù)m的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分別為的中點(diǎn), 為底面的重心.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于下列命題,正確的個(gè)數(shù)是( )
①若點(diǎn)(2,1)在圓x2+y2+kx+2y+k2﹣15=0外,則k>2或k<﹣4
②已知圓M:(x+cosθ)2+(y﹣sinθ)2=1,直線y=kx,則直線與圓恒相切
③已知點(diǎn)P是直線2x+y+4=0上一動(dòng)點(diǎn),PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點(diǎn),則四邊形PACB的最小面積是為2
④設(shè)直線系M:xcosθ+ysinθ=2+2cosθ,M中的直線所能圍成的正三角形面積都等于12 .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)證明在上僅有一個(gè)零點(diǎn);
(2)若曲線在點(diǎn)處的切線與軸平行,且在點(diǎn)處的切線與直線平行,(O是坐標(biāo)原點(diǎn)),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為實(shí)常數(shù).
(1)設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),直線、與函數(shù)的圖象一共有四個(gè)不同的交點(diǎn),且以此四點(diǎn)為頂點(diǎn)的四邊形恰為平行四邊形.求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-x3+ax,
(1)求a=3時(shí),函數(shù)f(x)的單調(diào)區(qū)間;
(2)求a=12時(shí),函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合U={x|x是小于6的正整數(shù)},A={1,2},B∩(C∪A)={4},則∪(A∪B)=( )
A.{3,5}
B.{3,4}
C.{2,3}
D.{2,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1 , F為橢圓C1: =1,(a1>b1>0)與雙曲線C2的公共左、右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2,若橢圓C1的離心率e∈[ , ],則雙曲線C2的離心率的取值范圍是( )
A.[ , ]
B.[ ,++∞)
C.(1,4]
D.[ ,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列幾個(gè)命題
①方程ax2+x+1=0有且只有一個(gè)實(shí)根的充要條件是a= ;
②函數(shù)y= + 是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)=(2x﹣3)2+1的圖象是由函數(shù)y=(2x﹣5)2+1的圖象向左平移1個(gè)單位得到的;
④命題“若x,y都是偶數(shù),則x+y也是偶數(shù)”的逆命題為真命題;
⑤已知p,q是簡(jiǎn)單命題,若p∨q是真命題,則p∧q也是真命題;
⑥若函數(shù)f(x)=|ax﹣1|﹣log2(x+2),(a>1)有兩個(gè)零點(diǎn)x1 , x2 , 則(x1+2)(x2+2)>1.
其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com