【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.
【答案】解:(Ⅰ)證明:因為底面ABCD是正方形,
所以AB∥CD.
又因為AB平面PCD,CD平面PCD,
所以AB∥平面PCD.
又因為A,B,E,F(xiàn)四點共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.
(Ⅱ)證明:在正方形ABCD中,CD⊥AD.
又因為平面PAD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以CD⊥平面PAD.
又AF平面PAD
所以CD⊥AF.
由(Ⅰ)可知AB∥EF,
又因為AB∥CD,所以CD∥EF.由點E是棱PC中點,所以點F是棱PD中點.
在△PAD中,因為PA=AD,所以AF⊥PD.
又因為PD∩CD=D,所以AF⊥平面PCD.
【解析】(Ⅰ)證明:AB∥平面PCD,即可證明AB∥EF;(Ⅱ)利用平面PAD⊥平面ABCD,證明CD⊥AF,PA=AD,所以AF⊥PD,即可證明AF⊥平面PCD;
【考點精析】認(rèn)真審題,首先需要了解直線與平面垂直的判定(一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在圓心角為90°的扇形AOB中,以圓心O作為起點作射線OC,OD,則使∠AOC+∠BOD<45°的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) , =﹣k + ,m∈R,k、t為正實數(shù).
(1)若 ∥ ,求m的值;
(2)若 ⊥ ,求m的值;
(3)當(dāng)m=1時,若 ⊥ ,求k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
是否需要志愿 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當(dāng)點Q坐標(biāo)為(0,1)時,點R坐標(biāo)為(0,2)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證: 為定值;
(3)求證:過點R且與直線QB垂直的直線經(jīng)過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察以下各等式:
tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,
tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,
tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.
分析上述各式的共同特點,猜想出表示的一般規(guī)律,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點P滿足:過點P向圓C1作兩條切線PA,PB,切點為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),(其中a>0,且a≠1).
(1)請你推測g(5)能否用f(2),f(3),g(2),g(3)來表示;
(2)如果(1)中獲得了一個結(jié)論,請你推測能否將其推廣.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com