設(shè)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)-f(x)=0,當(dāng)0≤x≤1時(shí),f(x)=x2,又g(x)=k(x-
1
4
)
,若方程f(x)=g(x)恰有兩解,則k的范圍是( 。
A、{
4
11
,-
4
5
}
B、{1,
4
11
,-
4
5
}
C、{
4
3
,
4
11
,-
4
5
}
D、{1,
4
3
4
11
,-
4
5
}
分析:根據(jù)f(x+2)-f(x)=0,可知f(x)是周期為2的函數(shù),然后根據(jù)題意畫出函數(shù)的圖象,結(jié)合函數(shù)圖象,可知方程f(x)=g(x)恰有兩解,有四種情形,然后求出斜率即可.
解答:解:∵f(x+2)-f(x)=0
∴f(x)是周期為2的函數(shù),根據(jù)題意畫出函數(shù)的圖象
精英家教網(wǎng)
過點(diǎn)A時(shí)斜率為
4
3
,相切時(shí)斜率為1,過點(diǎn)B的斜率為
4
11
,過點(diǎn)C的斜率為-
4
5

故選D.
點(diǎn)評:本題主要考查知識點(diǎn)是根的存在性及根的個(gè)數(shù)判斷、函數(shù)的圖象及其應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x-1,則f(-1)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時(shí),有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實(shí)數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時(shí),f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時(shí)的解析式為( 。
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習(xí)冊答案