設(shè)等差數(shù)列an的公差為2,且a1+a4+a7=-50,則a3+a6+a9的值為( 。
A.-12B.-28C.-18D.-38
因為等差數(shù)列的公差d=2,且a1+a4+a7=-50,
則a3+a6+a9=(a1+2d)+(a4+2d)+(a7+2d)=6d+(a1+a4+a7)=12-50=-38.
故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,若a1,a2,a3,a4,a5,a6,a7的方差為1,則d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)等差數(shù)列{an}的公差d不為0,a1=9d.若ak是a1與a2k的等比中項,則k=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差d是2,前n項的和為Sn,則
lim
n→∞
a
2
n
-n2
Sn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)等差數(shù)列{an}的公差d不為零,a1=9d.若ak是a1與a2k的等比中項,則k=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差d≠0,數(shù)列{bn}為等比數(shù)列,若a1=b1=a,a3=b3,a7=b5
(1)求數(shù)列{bn}的公比q;
(2)若an=bm,n,m∈N*,求n與m之間的關(guān)系;
(3)將數(shù)列{an},{bn}中的公共項按由小到大的順序排列組成一個新的數(shù)列{cn},是否存在正整數(shù)p,q,r(p<q<r)使得p,q,r和cp+p,cq+q,cr+r均成等差數(shù)列?說明理由.

查看答案和解析>>

同步練習(xí)冊答案