某社區(qū)對該區(qū)所轄的老年人是否需要特殊照顧進行了一項分性別的抽樣調(diào)查,針對男性老年人和女性老年人需要特殊照顧和不需要特殊照顧得出了一個2×2的列聯(lián)表,并計算得出k=4.350,則下列結(jié)論正確的是( 。
A、有95%的把握認為該社區(qū)的老年人是否需要特殊照顧與性別有關(guān)
B、有95%的把握認為該社區(qū)的老年人是否需要特殊照顧與性別無關(guān)
C、該社區(qū)需要特殊照顧的老年人中有95%是男性
D、該地區(qū)每100名老年人中有5個需要特殊照顧
考點:獨立性檢驗的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:根據(jù)獨立性檢驗的基本思想方法可知選項A正確.
解答: 解:∵計算得出k=4.350>3.841,
∴根據(jù)獨立性檢驗的基本思想方法可知有95%的把握認為該社區(qū)的老年人是否需要特殊照顧與性別有關(guān).
故選:A.
點評:本題考查獨立性檢驗的應(yīng)用,考查數(shù)據(jù)處理能力、運算求解能力和應(yīng)用意識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其側(cè)(左)視圖是一個等邊三角形,則這個幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x,函數(shù)f(x)=(5-a)x2-6x+a+5恒為正值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)fn(x)=sin(
2
+x)(n∈N*),若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=0,則sinA+cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式2x-1>m(x2-1)對任意m∈[-2,2]恒成立,則x∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、對于實數(shù)a、b、c,若a>b,則ac2>bc2
B、x2>1是x>1的充分而不必要條件
C、?α,β∈R,使得sin(α+β)=sinα+sinβ成立
D、?α,β∈R,tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個“巧值點”.下列函數(shù)中,有“巧值點”的是( 。
①f(x)=x2;
②f(x)=e-x;
③f(x)=lnx;
④f(x)=
1
x
A、①③④B、③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=x2上存在點(x,y)滿足約束條件
x+y-2≤0
x-2y-2≤0
x>m
,則實數(shù)m的取值范圍是( 。
A、[-2,1]
B、[1,+∞)
C、(0,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
2-3i
3+4i
(i是虛數(shù)單位)所對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案