A、B、C是我軍三個(gè)炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時(shí)刻,A發(fā)現(xiàn)敵炮陣地的某信號(hào),由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.
分析:建立坐標(biāo)系,因?yàn)閨PB|=|PC|,所以點(diǎn)P在線段BC的垂直平分線上,寫出中垂線的方程,又|PB|-|PA|=4,故P在以A、B為焦點(diǎn)的雙曲線右支上,寫出雙曲線方程,將這兩個(gè)方程聯(lián)立方程組,解出交點(diǎn)P的坐標(biāo),由PA斜率計(jì)算炮擊的方位角.
解答:解:以線段AB的中點(diǎn)為原點(diǎn),正東方向?yàn)閤軸的正方向建立直角坐標(biāo)系,則A(3,0) B(-3,0)
 
 
 
C(-5,2
3
)

依題意|PB|-|PA|=4
∴P在以A、B為焦點(diǎn)的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為 
x2
4
-
y2
5
=1  (x>0)
…(3分)
又|PB|=|PC|,∴P又在線段BC的垂直平分線上x-
3
y+7=0
…(5分)
由方程組
x-
3
y+7=0
5x2-4y2=20
解得   
x=8(負(fù)值舍去)
y=5
3
即 P(8,5
3
)
…(8分)
由于kAP=
3
,可知P在A北30°東方向.…(10分)
點(diǎn)評(píng):本題主要考查了雙曲線方程的應(yīng)用、解三角形的實(shí)際應(yīng)用.要充分利用三角形的邊角關(guān)系,利用三角函數(shù)、正弦定理、余弦定理等公式找到問題解決的途徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

A、B、C是我軍三個(gè)炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時(shí)刻,A發(fā)現(xiàn)敵炮陣地的某信號(hào),由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B、C是我軍三個(gè)炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時(shí)刻,A發(fā)現(xiàn)敵炮陣地的某信號(hào),由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年重慶市武隆中學(xué)高二(上)期末數(shù)學(xué)模擬試卷2(解析版) 題型:解答題

A、B、C是我軍三個(gè)炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時(shí)刻,A發(fā)現(xiàn)敵炮陣地的某信號(hào),由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.

查看答案和解析>>

同步練習(xí)冊(cè)答案