【題目】(Ⅰ)已知集合A={(x,y)|y=x2+2},B={(x,y)|y=6﹣x2},求A∩B; (Ⅱ)已知集合A={y|y=x2+2},B={y|y=6﹣x2},求A∩B.

【答案】解:(Ⅰ)聯(lián)立得: , 消去y得:x2+2=6﹣x2 ,
解得:x=± ,
把x= 代入得:y=4;把x=﹣ 代入得:y=4,
則A∩B={( ,4),(﹣ ,4)};
(Ⅱ)由y=x2+2≥2,得到A={y|y≥2},
由y=6﹣x2≤6,得到B={y|y≤6},
則A∩B={y|2≤x≤6}
【解析】(Ⅰ)聯(lián)立A與B中兩函數(shù)解析式,求出解即可確定出兩集合的交集;(Ⅱ)求出A與B中y的范圍確定出A與B,找出兩集合的交集即可.
【考點(diǎn)精析】掌握集合的交集運(yùn)算是解答本題的根本,需要知道交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1= (n=1,2,3,…),
(1)計(jì)算a1 , a2 , a3 , a4
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x,有下列四個(gè)結(jié)論:①f(x)的最小正周期為π;②f(x)在區(qū)間[﹣ ]上是增函數(shù);③f(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;④x= 是f(x)的一條對(duì)稱軸.其中正確結(jié)論的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,游樂場(chǎng)中摩天輪勻速逆時(shí)針旋轉(zhuǎn),每轉(zhuǎn)一圈需要6min,其中心距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點(diǎn)P的起始位置在最低點(diǎn)處,在時(shí)刻t(min)時(shí)點(diǎn)P距離地面的高度為f(t)=Asin(wt+φ)+h(A>0,w>0,﹣π<φ<0,t≥0).
(1)求f(t)的單調(diào)區(qū)間;
(2)求證:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(x+1).
(1)將函數(shù)f(x)的圖象上的所有點(diǎn)向右平行移動(dòng)1個(gè)單位得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達(dá)式;
(2)若關(guān)于x的函數(shù)y=g2(x)﹣mg(x2)+3在[1,4]上的最小值為2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,A(1,1)、B(7,3)、D(4,6),點(diǎn)M是線段AB的中點(diǎn)線段CM與BD交于點(diǎn)P.
(1)求直線CM的方程;
(2)求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對(duì)稱,若函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.(1﹣e,1)
B.(1﹣e,∞)
C.(1﹣e,1]
D.(﹣∞,1﹣e)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年,電商行業(yè)的蓬勃發(fā)展也帶動(dòng)了快遞業(yè)的高速發(fā)展.某快遞配送站每天至少要完成1800件包裹的配送任務(wù),該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進(jìn)行配送.已知每個(gè)新手快遞員每天可配送240件包裹,日工資320元;每個(gè)老快遞員每天可配送300件包裹,日工資520元.

(Ⅰ)求該配送站每天需支付快遞員的總工資最小值;

(Ⅱ)該配送站規(guī)定:新手快遞員某個(gè)月被評(píng)為“優(yōu)秀”,則其下個(gè)月的日工資比這個(gè)月提高12%.那么新手快遞員至少連續(xù)幾個(gè)月被評(píng)為“優(yōu)秀”,日工資會(huì)超過老快遞員?

(參考數(shù)據(jù): , .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的左、右焦點(diǎn)分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(diǎn)(不含長軸端點(diǎn)),且△PF1F2面積的最大值為1.
(1)求橢圓E的方程;
(2)已知直x﹣y+m=0與橢圓E交于不同的兩點(diǎn)A,B,且線AB的中點(diǎn)不在圓 內(nèi),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案