已知橢圓C:的兩個焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對稱,求直線L的方程.
(1)橢圓C的方程為=1. (2)所求的直線方程為8x-9y+25=0.

試題分析:(1) ∵點(diǎn)P在橢圓C上,∴,a=3.
在Rt△PF1F2中,故橢圓的半焦距c=,
從而b2=a2-c2="4," ∴橢圓C的方程為=1.
(2)設(shè)A,B的坐標(biāo)分別為(x1, y1)、(x2, y2). ∵圓的方程為(x+2)2+(y-1)2=5,  ∴圓心M的坐標(biāo)為(-2,1). 從而可設(shè)直線l的方程為 y="k(x+2)+1," 代入橢圓C的方程得
(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.  (*)
又∵A、B關(guān)于點(diǎn)M對稱.  ∴  解得,
∴直線l的方程為  即8x-9y+25=0. 此時方程(*)的 ,故所求的直線方程為8x-9y+25=0.
解法二:(1)同解法一.
(2)已知圓的方程為(x+2)2+(y-1)2=5,  ∴圓心M的坐標(biāo)為(-2,1).
設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2). 由題意x1x2
 ①     ②
由①-②得   ③
又∵A、B關(guān)于點(diǎn)M對稱,∴x1+ x2=-4, y1+ y2=2, 代入③得,即直線l的斜率為,
∴直線l的方程為y-1=(x+2),即8x-9y+25="0." 此時方程(*)的 ,故所求的直線方程為8x-9y+25=0.
點(diǎn)評:中檔題,本題求橢圓的標(biāo)準(zhǔn)方程時,應(yīng)用了橢圓的定義。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本解法給出了兩種思路,其中思路1主要是利用韋達(dá)定理,結(jié)合對稱性求得直線方程;思路2則利用了“點(diǎn)差法”求斜率,進(jìn)一步結(jié)合對稱性求得直線方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線)的一條漸近線被圓截得的弦長為,則雙曲線的離心率為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,的焦點(diǎn)為F,直線與拋物線C交于A、B兩點(diǎn),則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系和極坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,軸的正半軸與極軸重合,單位長度相同。已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,射線,與曲線交于極點(diǎn)以外的三點(diǎn)A,B,C.
(1)求證:;
(2)當(dāng)時,B,C兩點(diǎn)在曲線上,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)、, 是一個動點(diǎn), 且直線、的斜率之積為.
(1) 求動點(diǎn)的軌跡的方程;
(2) 設(shè), 過點(diǎn)的直線、兩點(diǎn), 若對滿足條件的任意直線, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)為,拋物線C:以F2為焦點(diǎn)且與橢圓相交于點(diǎn)、,點(diǎn)軸上方,直線與拋物線相切.
(1)求拋物線的方程和點(diǎn)、的坐標(biāo);
(2)設(shè)A,B是拋物線C上兩動點(diǎn),如果直線軸分別交于點(diǎn). 是以,為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由直線上的點(diǎn)向圓C:引切線,
求切線段長的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的方程為,則此雙曲線的焦點(diǎn)到漸近線的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程表示曲線,給出以下命題:
①曲線不可能為圓;
②若,則曲線為橢圓;
③若曲線為雙曲線,則;
④若曲線為焦點(diǎn)在軸上的橢圓,則.
其中真命題的序號是_____(寫出所有正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案