18.如圖,已知三棱錐P-ABC,BC⊥AC,BC=AC=2,PA=PB,平面PAB⊥平面ABC,D、E、F分別是AB、PB、PC的中點(diǎn).
(Ⅰ)證明:PD⊥平面ABC;
(Ⅱ)若M為BC中點(diǎn),且PM⊥平面EFD,求三棱錐P-ABC的體積.

分析 (Ⅰ)由PA=PB,D為AB中點(diǎn),可得PD⊥AB,再由面面垂直的性質(zhì)可得PD⊥平面ABC;
(Ⅱ)設(shè)PM交EF于N,連接DM,DN,由線面垂直的性質(zhì)得到PM⊥DN,由已知可得DN垂直平分PM,故PD=DM,求出DM,進(jìn)一步求得PD.即三棱錐P-ABC的高,然后由三棱錐體積公式求得三棱錐P-ABC的體積.

解答 (Ⅰ)證明:∵PA=PB,D為AB中點(diǎn),∴PD⊥AB,
又平面PAB⊥平面ABC,交線為AB,PD?平面PAB,
∴PD⊥平面ABC;
(Ⅱ)解:設(shè)PM交EF于N,連接DM,DN,
∵PM⊥平面EFD,DN?平面DEF,
∴PM⊥DN,
又E,F(xiàn)分別是PB,PC的中點(diǎn),
∴N為EF的中點(diǎn),也是PM的中點(diǎn),
∴DN垂直平分PM,故PD=DM,
又DM為△ABC的中位線,則DM=$\frac{1}{2}AC$=1,∴PD=1.
∵BC⊥AC,則${S}_{△ABC}=\frac{1}{2}AC•BC=2$.
∴三棱錐P-ABC的體積${V}_{P-ABC}=\frac{1}{3}{S}_{△ABC}•PD=\frac{2}{3}$

點(diǎn)評(píng) 本題考查直線與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了多面體體積的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.為了得到函數(shù)y=sin(2x-$\frac{π}{5}$),x∈R的圖象,只需將函數(shù)y=sin2x,x∈R的圖象上所有的點(diǎn)( 。
A.向左平行移動(dòng)$\frac{π}{5}$個(gè)單位長(zhǎng)度B.向右平行移動(dòng)$\frac{π}{5}$個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)$\frac{π}{10}$個(gè)單位長(zhǎng)度D.向右平行移動(dòng)$\frac{π}{10}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.曲線y=4x+x2在點(diǎn)(-1,-3)處的切線方程是( 。
A.y=7x+4B.y=7x+2C.y=x-4D.y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.幾個(gè)月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題,然而,這種模式也遇到了一些讓人尷尬的問(wèn)題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?br />  為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如表:
年齡[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受訪人數(shù)56159105
支持發(fā)展
共享單車人數(shù)
4512973
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;
年齡低于35歲年齡不低于35歲合計(jì)
支持   
不支持   
合計(jì)  
(2)若對(duì)年齡在[15,20)的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,求恰好這兩人都支持發(fā)展共享單車的概率.
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-ax=0恰有兩個(gè)不同的根,則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{e}$)C.($\frac{1}{e}$,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{4n}{{a}_{n}{a}_{n+1}}$•sin$\frac{{a}_{n}π}{2}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知拋物線C:y2=6x的焦點(diǎn)為F,點(diǎn)A(0,m),m>0,射線FA于拋物線C交于點(diǎn)M,與其準(zhǔn)線交于點(diǎn)N,若|
MN|=2|FM|,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),定義橢圓C上的點(diǎn)M(x0,y0)的“伴隨點(diǎn)”為$N(\frac{x_0}{a},\frac{y_0})$.
(1)求橢圓C上的點(diǎn)M的“伴隨點(diǎn)”N的軌跡方程;
(2)如果橢圓C上的點(diǎn)(1,$\frac{3}{2}$)的“伴隨點(diǎn)”為($\frac{1}{2}$,$\frac{3}{2b}$),對(duì)于橢圓C上的任意點(diǎn)M及它的“伴隨點(diǎn)”N,求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范圍;
(3)當(dāng)a=2,b=$\sqrt{3}$時(shí),直線l交橢圓C于A,B兩點(diǎn),若點(diǎn)A,B的“伴隨點(diǎn)”分別是P,Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知對(duì)任意實(shí)數(shù)k>1,關(guān)于x的不等式$k({x-a})>\frac{2x}{e^x}$在(0,+∞)上恒成立,則a的最大整數(shù)值為( 。
A.0B.-1C.-2D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案