【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級(jí) | 級(jí)優(yōu) | 級(jí)良 | 級(jí)輕度污染 | 級(jí)中度污染 | 級(jí)重度污染 | 級(jí)嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在年天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請(qǐng)估算年(以天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿一天按一天計(jì)算);
(Ⅱ)該校年月、日將作為高考考場(chǎng),若這兩天中某天出現(xiàn)級(jí)重度污染,需要凈化空氣費(fèi)用元,出現(xiàn)級(jí)嚴(yán)重污染,需要凈化空氣費(fèi)用元,記這兩天凈化空氣總費(fèi)用為元,求的分布列及數(shù)學(xué)期望.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析: (Ⅰ)根據(jù)頻率分布直方圖知小長(zhǎng)方形面積為對(duì)應(yīng)區(qū)間概率,先計(jì)算空氣質(zhì)量?jī)?yōu)良區(qū)間對(duì)應(yīng)的概率,再根據(jù)頻數(shù)等于總數(shù)乘以概率得空氣質(zhì)量?jī)?yōu)良的天數(shù),(Ⅱ)先確定隨機(jī)變量取法,再分別求對(duì)應(yīng)概率,列表得分布列,最后根據(jù)期望公式求數(shù)學(xué)期望.
試題解析: (Ⅰ)由直方圖可估算年(以天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)為
(天).
(Ⅱ)由題可知, 的所有可能取值為: , , , , , , ,
則: ,
.
的分布列為
(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.
(ⅰ)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ⅱ)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù).利用(ⅰ)的結(jié)果,求E(X).
附: ≈12.2.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),滿足.
(1)求數(shù)列的通項(xiàng)公式.
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對(duì)上網(wǎng)流量的需求越來越大.某電信運(yùn)營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機(jī)抽取50個(gè)用戶,按年齡分組進(jìn)行訪談,統(tǒng)計(jì)結(jié)果如右表.
組 號(hào) | 年齡 | 訪談 人數(shù) | 愿意 使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應(yīng)分別抽取多少人?
(Ⅱ)若從第5組的被調(diào)查者訪談人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以48歲為分界點(diǎn),能否在犯錯(cuò)誤不超過1%的前提下認(rèn)為,是否愿意選擇此款“流量包”套餐與人的年齡有關(guān)?
年齡不低于48歲的人數(shù) | 年齡低于48歲的人數(shù) | 合計(jì) | |
愿意使用的人數(shù) | |||
不愿意使用的人數(shù) | |||
合計(jì) |
參考公式:,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體中, 分別為的中點(diǎn).
(1)證明:平面平面;
(2)證明: 平面;
(3)若正方體棱長(zhǎng)為1,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果店購進(jìn)某種水果的成本為,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來30天的銷售單價(jià)與時(shí)間之間的函數(shù)關(guān)系式為,銷售量與時(shí)間的函數(shù)關(guān)系式為。
(Ⅰ)該水果店哪一天的銷售利潤最大?最大利潤是多少?
(Ⅱ)為響應(yīng)政府“精準(zhǔn)扶貧”號(hào)召,該店決定每銷售水果就捐贈(zèng)元給“精準(zhǔn)扶貧”對(duì)象.欲使捐贈(zèng)后不虧損,且利潤隨時(shí)間 的增大而增大,求捐贈(zèng)額的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),利用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性,并求其值域;
(2)若對(duì)任意,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績(jī)贏得第28屆亞錦賽冠軍,同時(shí)拿到亞洲唯一1張直通里約奧運(yùn)會(huì)的入場(chǎng)券,賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價(jià)值球員),下表是易建聯(lián)在這9場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
注:(1)表中表示出手次命中次;
(2)(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
(1)從上述9場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中超過50%的概率;
(2)從上述9場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中至少有一場(chǎng)超過60%的概率;
(3)用來表示易建聯(lián)某場(chǎng)的得分,用來表示中國隊(duì)該場(chǎng)的總分,畫出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷與之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com