已知
a
=(1,-2,-1),
b
=(0,
1
2
,6)
,則
a
b
方向上的投影為
 
分析:由向量
a
在向量
b
方向上的投影的定義,結(jié)合平面向量數(shù)量積公式,我們易得向量
a
在向量
b
方向上的投影為
a
b
|
b
|
,將
a
=(1,-2,-1),
b
=(0,
1
2
,6)代入即可得到答案.
解答:解:設(shè)向量
a
=(1,-2,-1)與
b
=(0,
1
2
,6)的夾角為θ
則向量
a
在向量
b
方向上的投影為|
a
|•coaθ=
a
b
|
b
|
=
(1,-2,-1)•(0,
1
2
,6)
02+ (
1
2
)  
2
+62
=
-7
145
2
=-
14
145
145

故答案為:-
14
145
145
點評:本題考查的知識點是平面向量數(shù)量積的運算,其中根據(jù)向量
a
在向量
b
方向上的投影的定義,并結(jié)合平面向量數(shù)量積公式將其轉(zhuǎn)化為
a
b
|
b
|
是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2)
,
b
=(-3,2)
,當(dāng)k為何值時,
(1)k
a
+
b
a
-3
b
垂直?
(2)k
a
+
b
a
-3
b
平行?平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={1,2,3,4,5,6,7,8,9},B={1,2,3},C={3,4,5,6},則A∩(B∪C)=
{1,2,3,4,5,6}
{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2)
b
=(-3,2)

(1)求
a
-3
b

(2)當(dāng)k
a
+
b
a
-3
b
平行時,求實數(shù)k的值.它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)對于正整數(shù)a,b,存在唯一一對整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當(dāng)r=0時,稱b能整除a,記作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(Ⅱ)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對任意的整數(shù)x1,x2∈A,若|x1-x2|∈{1,2,3},則f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的個數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”.求最大的m∈A,使含m的集合A的有12個元素的任意子集為“和諧集”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={1,2,3},B={1,2}.定義集合A、B之間的運算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},則集合A*B的所有子集的個數(shù)為
16
16

查看答案和解析>>

同步練習(xí)冊答案