在數(shù)列中,=0,且對(duì)任意k,成等差數(shù)列,其公差為2k.
(Ⅰ)證明成等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,證明.
【解析】本小題主要考查等差數(shù)列的定義及前n項(xiàng)和公式、等比數(shù)列的定義、數(shù)列求和等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證能力、綜合分析和解決問(wèn)題的能力及分類(lèi)討論的思想方法,滿(mǎn)分14分。
(I)證明:由題設(shè)可知,,,,,
。
從而,所以,,成等比數(shù)列。
(II)解:由題設(shè)可得
所以
.
由,得 ,從而.
所以數(shù)列的通項(xiàng)公式為或?qū)憺?sub>,。
(III)證明:由(II)可知,,
以下分兩種情況進(jìn)行討論:
(1) 當(dāng)n為偶數(shù)時(shí),設(shè)n=2m
若,則,
若,則
.
所以,從而
(2) 當(dāng)n為奇數(shù)時(shí),設(shè)。
所以,從而
綜合(1)和(2)可知,對(duì)任意有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分14分)
在數(shù)列中,=0,且對(duì)任意k,成等差數(shù)列,其公差為2k.
(Ⅰ)證明成等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版文科數(shù)學(xué)之專(zhuān)題三 數(shù)列 題型:解答題
(本小題滿(mǎn)分14分)
在數(shù)列中,=0,且對(duì)任意k,成等差數(shù)列,其公差為2k.
(Ⅰ)證明成等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省揭陽(yáng)市第一中學(xué)高二上學(xué)期期末檢測(cè)數(shù)學(xué)文卷 題型:解答題
(本小題14分)在數(shù)列中,=0,且對(duì)任意k,成等差數(shù)列,其公差為2k. (Ⅰ)證明成等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記. 證明: 當(dāng)為偶數(shù)時(shí), 有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年新人教版高三上學(xué)期單元測(cè)試(5)數(shù)學(xué)試卷 題型:解答題
(12分)在數(shù)列中,=0,且對(duì)任意k,成等差數(shù)列,
其公差為2k。
(Ⅰ)證明成等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com