已知兩個(gè)不共線的向量a,b滿足a+2xb=xa+yb,那么實(shí)數(shù)x,y的值分別是(  )
A、0,0B、1,2C、0,1D、2,1
分析:利用平面向量的基本定理令兩個(gè)基底的系數(shù)對應(yīng)相等,列出方程組,求出x,y的值.
解答:解;∵
a
,
b
不共線
a
+2x
b
=x
a
+y
b

由平面向量的基本定理得
1=x
2x=y

解得x=1,y=2
故選B
點(diǎn)評:平面內(nèi)的向量都可以向一組不共線的向量上分解且分解是唯一的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)不共線的向量
a
b
滿足
a
=(1,
3
),
b
=(cosθ,sinθ)(θ∈R)

(1)若2
a
-
b
a
-7
b
垂直,求向量
a
b
的夾角;
(2)當(dāng)θ∈[0,
π
2
]
時(shí),若存在兩個(gè)不同的θ使得|
a
+
3
b
|=|m
a
|
成立,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)不共線的向量
a
b
,它們的夾角為θ,且|
a
|=3
,|
b
|=1
,x為正實(shí)數(shù).
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若θ=
π
6
,求|x
a
-
b
|
的最小值及對應(yīng)的x的值,并判斷此時(shí)向量
a
x
a
-
b
是否垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)不共線的向量
a
,
b
,它們的夾角為θ,且|
a
|=3
,|
b
|=1
,若
a
+
b
a
-4
b
垂直,則sin(θ+
π
6
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)不共線的向量
a
b
的夾角為θ,且|
a
|=3,|
b
|=1,x為正實(shí)數(shù).
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若θ=
π
6
,求|x
a
-
b
|的最小值及對應(yīng)的x的值,并指出此時(shí)向量
a
與x
a
-
b
的位置關(guān)系;
(3)若θ為銳角,對于正實(shí)數(shù)m,關(guān)于x的方程|x
a
-
b
|=|m
a
|有兩個(gè)不同的正實(shí)數(shù)解,且x≠m,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案