已知函數(shù)f(x)=lg(ax-bx)中,常數(shù)a,b滿足a>1>b>0,且a2=b2+1,那么函數(shù)f(x)>0的解集為( )
A.(0,+∞)
B.(1,+∞)
C.(2,+∞)
D.(10,+∞)
【答案】分析:令u(x)=ax-bx,利用定義判斷u(x)在x∈(0,+∞)上單調(diào)增,從而得到f(x)在x∈(0,+∞)上單調(diào)增,由a2=b2+1,可得f(2)=lg(a2-b2)=lg1=0,進(jìn)而得到f(x)>0=f(2).
解答:解:由題意可得:令u(x)=ax-bx,不等式即 lgu(x)>0,
∵a>1>b>0,
所以u(x)在實(shí)數(shù)集上是個增函數(shù),且u(x)>0,
又因?yàn)閡(0)=0,
所以應(yīng)有  x>0,
∴u(x)在定義域(0,+∞)上單調(diào)增,
∴f(x)=lg(ax-bx)在x∈(0,+∞)上單調(diào)增.
又因?yàn)閍2=b2+1,
所以f(2)=lg(a2-b2)=lg1=0,
所以f(x)>0=f(2)
所以(2,+∞).
故選C.
點(diǎn)評:本題考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),由真數(shù)u(x)的單調(diào)性確定f(x)的單調(diào)性,利用特殊點(diǎn)lg1=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案