已知橢圓,直線l為圓的一條切線,且經(jīng)過橢圓C的右焦點,直線l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點關(guān)于l的對稱點是否在橢圓上,并說明理由。

(1);(2)不在橢圓上

解析試題分析:(1)由題可得l的方程為    2分)
              4分
               5分
(2)設(shè)原點關(guān)于l的對稱點為,則 9分
,即:其對稱點不在橢圓上           12分
考點:本題考查了橢圓方程的性質(zhì)
點評:熟練運用幾何關(guān)系轉(zhuǎn)化為橢圓中a,b,c的關(guān)系求解離心率,有關(guān)點關(guān)于直線的對稱問題,要注意求解的步驟

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點到兩點,的距離之和等于4,設(shè)點的軌跡為,直線與軌跡交于兩點.
(Ⅰ)寫出軌跡的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點B(0,1),點C(0,—3),直線PB、PC都是圓的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標準方程;
(II)過點(1,0)作直線與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使為常數(shù)?若存在,求出點R的坐標與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).
(1)求曲線的直角坐標方程以及曲線的普通方程;
(2)設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點、的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點、,當的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)與兩定點連線的斜率之積等于非零常數(shù)的點的軌跡,加上 兩點,所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當時,對應(yīng)的曲線為;對給定的,對應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點,且為坐標原點),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的上頂點為,左焦點為,直線與圓相切.過點的直線與橢圓交于兩點.
(I)求橢圓的方程;
(II)當的面積達到最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左右焦點為,拋物線C:以F2為焦點且與橢圓相交于點,點軸上方,直線與拋物線相切.
(1)求拋物線的方程和點的坐標;
(2)設(shè)A,B是拋物線C上兩動點,如果直線,軸分別交于點. 是以,為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個定值,若不是說明理由.

查看答案和解析>>

同步練習(xí)冊答案