本小題滿分12分)
已知數(shù)列滿足=4n-3(n).
(I)若=2,求數(shù)列的前n項(xiàng)和;
(II)若對任意n,都有≥5成立,求為偶數(shù)時(shí),的取值范圍.
解:(I)由=4n-3(n)得=4n+1(n).
兩式相減,得=4.    
所以數(shù)列是首項(xiàng)為,公差為4的等差數(shù)列;數(shù)列是首項(xiàng)為,公差為4的等差數(shù)列.        …………………………. ………………………………………………2分
=1,=2,得=-1.
所以(k∈Z).…………………………………………………3分
①當(dāng)n為奇數(shù)時(shí),=2n,=2n-3,
+…+=()+()+…+()+
=1+9+…+(4n-11)+2n+2n
……. ………………………………………………5分
②當(dāng)n為偶數(shù)時(shí),+…+=()+()+…+()
=1+9+…+(4n-7) =
所以(k∈Z)……………………………………7分
(II)由(I)知,(k∈Z)
當(dāng)n為偶數(shù)時(shí),=2n-3-,=2n
≥5,得+16n-12. ………………………………….9分
+16n-12=+4
當(dāng)n=2時(shí),=4,所以≥4
解得≥1或≤-4……………………………………………………11分
綜上所述,的取值范圍是,.……………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的通項(xiàng)公式分別為,),將集合中的元素從小到大依次排列,構(gòu)成數(shù)列。
⑴求三個(gè)最小的數(shù),使它們既是數(shù)列中的項(xiàng),又是數(shù)列中的項(xiàng);
中有多少項(xiàng)不是數(shù)列中的項(xiàng)?說明理由;
⑶求數(shù)列的前項(xiàng)和)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列滿足,則的值為                        (    )
A.2B.1
C.0D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知各項(xiàng)均不為零的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1c
2Snan an+1r
(1)若r=-6,數(shù)列{an}能否成為等差數(shù)列?若能,求滿足的條件;若不能,請說明理由;
(2)設(shè),,
rc>4,求證:對于一切n∈N*,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列的前n項(xiàng)的和,那么這個(gè)數(shù)列的通項(xiàng)公式為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
已知數(shù)列﹛an﹜中,a2=p(p是不等于0的常數(shù)),Sn為數(shù)列﹛an﹜的前n項(xiàng)和,若對任意的正整數(shù)n都有Sn=.
(1)證明:數(shù)列﹛an﹜為等差數(shù)列;
(2)記bn=+,求數(shù)列﹛bn﹜的前n項(xiàng)和Tn;
(3)記cn=Tn-2n,是否存在正整數(shù)m,使得當(dāng)n>m時(shí),恒有cn∈(,3)?若存在,證明你的結(jié)論,并給出一個(gè)具體的m值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)各項(xiàng)為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足:

(1)求;
(2)設(shè)函數(shù),求數(shù)列的前項(xiàng)和;
(3)設(shè)為實(shí)數(shù),對滿足的任意正整數(shù)、,不等式
恒成立,求實(shí)數(shù)的最大值。

查看答案和解析>>

同步練習(xí)冊答案