精英家教網 > 高中數學 > 題目詳情
如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點,G,H分別為DE,AF的中點,將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為( 。
分析:連接HE,取HE的中點K,連接GK,則GK∥DH,故∠PGK即為所求的異面直線角或者其補角,利用余弦定理可得結論.
解答:解:如圖,連接HE,取HE的中點K,連接GK,則GK∥DH,故∠PGK即為所求的異面直線角或者其補角.
設這個正四面體的棱長為2,在△PGK中,PG=
3
,GK=
3
2
,PK=
1+
3
4
=
7
2

由余弦定理可得:cos∠PGK=
3+
3
4
-
7
4
3
×
3
2
=
2
3

故選A.
點評:本題考查空間點、線、面的位置關系及學生的空間想象能力、求異面直線角的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在正三角形ABC中,D、E分別在AC、AB上,
AD
AC
=
1
3
,AE=BE,則有( 。
A、△AED∽△BED
B、△AED∽△CBD
C、△AED∽△ABD
D、△BAD∽△BCD

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為AB,BC,AC的中點,G,H,I分別為DE,F(xiàn)C,EF的中點,將
△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為(  )

查看答案和解析>>

科目:高中數學 來源:2011屆湖北省天門市高三模擬考試(二)理科數學 題型:單選題

如圖,在正三角形ABC中, D,E,F(xiàn)分別為AB,BC,AC的中點,G,H,I分別為DE,F(xiàn)C,EF的中點,將△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為

A.B.arccosC.D.arccos

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖北省天門市高三模擬考試(二)理科數學 題型:選擇題

如圖,在正三角形ABC中, D,E,F(xiàn)分別為AB,BC,AC的中點,G,H,I分別為DE,F(xiàn)C,EF的中點,將△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為

    A.       B.arccos     C.       D.arccos

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在正三角形ABC中,D、E分別在AC、AB上,
AD
AC
=
1
3
,AE=BE,則有(  )
A.△AED△BEDB.△AED△CBDC.△AED△ABDD.△BAD△BCD
精英家教網

查看答案和解析>>

同步練習冊答案