已知F1、F2分別是橢圓數(shù)學公式+數(shù)學公式=1的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線l交曲線C于x軸上方兩個不同點P、Q,點P關(guān)于x軸的對稱點為M,設(shè)數(shù)學公式=數(shù)學公式
(I)若λ∈[2,4],求直線L的斜率k的取值范圍;
(II)求證:直線MQ過定點.

解:(I)令P(x1,y1),,Q(x2,y2),由題意,可設(shè)拋物線方程為 y2=2px
由橢圓的方程可得F1 (-1,0),F(xiàn)2 (1,0 )故p=2,曲線C的方程為 y2=4x,
由題意,可設(shè)PQ的方程 x=my-1 (m>0).把PQ的方程代入曲線C的方程 化簡可得 y2-4my+4=0,
∴y1+y2=4m,y1y2=4. 又 =,∴x1+1=λ(x2+1),y1=λy2,
=λ++2=4m2.λ∈[2,4],∴2+≤λ+≤4+,≤m2
∴直線L的斜率k的取值范圍為[,].
(II)由于P,M關(guān)于X軸對稱,故M(x1,-y1),,
-=+==0,
∴M、Q、F2三點共線,故直線MQ過定點 F2 (1,0 ).
分析:(I)求出曲線C的方程,把PQ的方程 x=my-1 (m>0)代入曲線C的方程 化簡可得 y2-4my+4=0,利用根與系數(shù)的關(guān)系 及 =,可得 =λ++2=4m2,據(jù)λ∈[2,4],求得直線L的斜率 的范圍.
(II)根據(jù)-=0,可得 M、Q、F2三點共線,故直線MQ過定點 F2 (1,0 ).
點評:本題考查橢圓、拋物線的標準方程、簡單性質(zhì),三點共線的條件,根據(jù)題意,得到2+≤λ+≤4+,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點F1,F(xiàn)2關(guān)于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
DF2
=
F2E
,點E關(guān)于x軸的對稱點為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點,P是雙曲線的上一點,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習冊答案