【題目】已知函數(shù).
(1)求證:函數(shù)是偶函數(shù);
(2)設(shè),求關(guān)于的函數(shù)在時(shí)的值域的表達(dá)式;
(3)若關(guān)于的不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析(2)(3).
【解析】試題分析:(1)判斷定義域是否關(guān)于原點(diǎn)對稱,計(jì)算判斷其與的關(guān)系; (2)令,故,換元得,轉(zhuǎn)化為二次函數(shù),分類討論求其最值即可;(3))由,得,即恒成立,求其最值即可.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,對任意, ,
所以,函數(shù)是偶函數(shù).
(2),
令,因?yàn)?/span>,所以,故,
原函數(shù)可化為, ,
圖像的對稱軸為直線,
當(dāng)時(shí),函數(shù)在時(shí)是增函數(shù),值域?yàn)?/span>;
當(dāng)時(shí),函數(shù)在時(shí)是減函數(shù),在時(shí)是增函數(shù),值域?yàn)?/span>.
綜上,
(3)由,得,
當(dāng)時(shí), ,所以,所以,
所以, 恒成立.
令,則, ,
由,得,所以, .
所以, ,即的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓上,過作軸的垂線,垂足為,點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)過的直線與點(diǎn)的軌跡交于兩點(diǎn),過作與垂直的直線與點(diǎn)的軌跡交于兩點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)與拋物線 的焦點(diǎn)重合,橢圓的離心率為,過點(diǎn)作斜率不為0的直線,交橢圓于兩點(diǎn),點(diǎn),且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點(diǎn)分別為的中點(diǎn),設(shè)直線與平面交于點(diǎn).
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 若橢圓上一點(diǎn)滿足,且橢圓過點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)是點(diǎn)在軸上的垂足,延長交橢圓于,求證: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點(diǎn)分別是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點(diǎn),使得,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心的中心在中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上且過點(diǎn),離心率是.
()求橢圓的標(biāo)準(zhǔn)方程.
()直線過點(diǎn)且與橢圓交于、兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, , , , 是中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com