【題目】作出下列函數(shù)的大致圖像,并寫出函數(shù)的單調(diào)區(qū)間和值域.

1;(2;(3;(4

【答案】1)增區(qū)間:,值域:R;

2)增區(qū)間:,減區(qū)間:,值域:

3)減區(qū)間:,增區(qū)間:,值域:

4)減區(qū)間:,增區(qū)間:,值域:,大致圖像見解析

【解析】

1)由,由對稱性即可作出圖像,結(jié)合圖像即可求出單調(diào)性、值域.

2)將函數(shù)化為,利用冪函數(shù)的圖像,由平移即可作出圖像,結(jié)合圖像即可求出單調(diào)性、值域.

3)由,通過圖像的翻折變化即可作出圖像,結(jié)合圖像即可求出單調(diào)性、值域.

4)由,去絕對值,描點即可作出大致圖像,結(jié)合圖像即可求出單調(diào)性、值域.

1)函數(shù)的圖象如圖所示:

函數(shù)在上為增函數(shù),值域:.

2,圖象如圖所示:

函數(shù)在為增函數(shù),在為減函數(shù),

值域為:.

3,圖象如圖所示:

函數(shù)在為減函數(shù),在為增函數(shù).

值域為:;

4

函數(shù)在為減函數(shù),在為增函數(shù),

值域為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):

經(jīng)計算: , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);

(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對于一組數(shù)據(jù), ……, ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關(guān)指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.


46.6

563

6.8

289.8

1.6

1469

108.8

表中=,=

(Ⅰ)根據(jù)散點圖判斷,,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);

(Ⅱ)根據(jù)()的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

(III)已知這種產(chǎn)品的年利zx,y的關(guān)系為,根據(jù)()的結(jié)果回答下列問題:

(Ⅰ)當年宣傳費時,年銷售量及年利潤的預報值時多少?

(Ⅱ)當年宣傳費為何值時,年利潤的預報值最大?

附:對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人玩錘子、剪刀、布的猜拳游戲,假設(shè)兩人都隨機出拳,求:

1)平局的概率;

2)甲贏的概率;

3)甲不輸?shù)母怕?/span>.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標有數(shù)字1,2,3,4.

(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標數(shù)字相同甲獲勝,所標數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省級示范高中高三年級對考試的評價指標中,有難度系數(shù)”“區(qū)分度綜合三個指標,其中,難度系數(shù),區(qū)分度,綜合指標.以下是高三年級 6 次考試的統(tǒng)計數(shù)據(jù):

i

1

2

3

4

5

6

難度系數(shù) xi

0.66

0.72

0.73

0.77

0.78

0.84

區(qū)分度 yi

0.19

0.24

0.23

0.23

0.21

0.16

(I) 計算相關(guān)系數(shù),若,則認為的相關(guān)性強;通過計算相關(guān)系數(shù) ,能否認為的相關(guān)性很強(結(jié)果保留兩位小數(shù))?

(II) 根據(jù)經(jīng)驗,當時,區(qū)分度與難度系數(shù)的相關(guān)性較強,從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即

(i) 寫出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));

(ii) 假設(shè)當時, 的關(guān)系依從(i)中的回歸方程,當 為何值時,綜合指標的值最大?

參考數(shù)據(jù):

參考公式:

相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(2,2,2),B(2,0,0),C(0,2,-2).

(1)寫出直線BC的一個方向向量;

(2)設(shè)平面α經(jīng)過點A,且BCα的法向量,M(x,yz)是平面α內(nèi)的任意一點,試寫出x,yz滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,APAB=2,BC=2,E,F分別是ADPC的中點.

(1)證明:PC⊥平面BEF;

(2)求平面BEF與平面BAP夾角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校擬派一名跳高運動員參加一項校際比賽,對甲、乙兩名跳高運動員進行了8次選拔比賽,他們的成績(單位:m)如下:

甲:1.701.65,1.681.69,1.721.73,1.68,1.67;

乙:1.60,1.73,1.721.61,1.621.71,1.701.75.

經(jīng)預測,跳高1.65m就很可能獲得冠軍.該校為了獲取冠軍,可能選哪位選手參賽?若預測跳高1.70m方可獲得冠軍呢?

查看答案和解析>>

同步練習冊答案