2.橢圓的兩個焦點和短軸的兩個端點,恰好是含60°角的菱形的四個頂點,則橢圓的離心率為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$或$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$或$\frac{\sqrt{3}}{3}$

分析 由題意可得tan30°=$\frac{c}$,或tan60°=$\frac{c}$,再由a,b,c的關(guān)系和離心率公式,計算即可得到所求值.

解答 解:由于橢圓的兩個焦點和短軸兩個頂點,
是一個含60°角的菱形的四個頂點,
則tan30°=$\frac{c}$,或tan60°=$\frac{c}$,
當(dāng)$\frac{c}$=$\frac{\sqrt{3}}{3}$時,即b=$\sqrt{3}$c,即有a=$\sqrt{^{2}+{c}^{2}}$=2c,
由e=$\frac{c}{a}$=$\frac{1}{2}$;
當(dāng)$\frac{c}$=$\sqrt{3}$時,即b=$\frac{\sqrt{3}}{3}$c,即有a=$\sqrt{^{2}+{c}^{2}}$=$\frac{2\sqrt{3}}{3}$c,
由e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
可得離心率為$\frac{1}{2}$或$\frac{\sqrt{3}}{2}$.
故選:C.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,運用分類討論的思想方法是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若拋物線x2=2py(p>0)的焦點在圓x2+y2+2x-1=0上,則這條拋物線的準(zhǔn)線方程為y=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦點,它們的離心率之和為$\frac{14}{5}$,雙曲線的方程應(yīng)是( 。
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1C.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1D.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知條件p:x2-3x+2<0;條件q:|x-2|<1,則p是q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)P是焦距為6的雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上一點,雙曲線C的一條漸近線與圓(x-3)2+y2=5相切,若P到兩焦點距離之和為8,則P到兩焦點距離之積為(  )
A.6B.6$\sqrt{2}$C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,P是橢圓上一點,|PF1|=2|PF2|,∠F1PF2=$\frac{π}{3}$,則橢圓離心率的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦點為F,右頂點與上頂點分別為點A、B,且$|AB|=\frac{{\sqrt{5}}}{2}|BF|$.
(1)求橢圓C的離心率;
(2)若過點(0,2)斜率為2的直線l交橢圓C于P、Q,且OP⊥OQ,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.-1B.4C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在復(fù)平面內(nèi),復(fù)數(shù)(1-2i)2對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案