【題目】如圖,已知橢圓C1: +y2=1,雙曲線C2: ﹣ =1(a>0,b>0),若以C1的長(zhǎng)軸為直徑的圓與C2的一條漸近線交于A,B兩點(diǎn),且C1與該漸近線的兩交點(diǎn)將線段AB三等分,則C2的離心率為( )
A.9
B.5
C.
D.3
【答案】D
【解析】解:由已知,|OA|=a= ,
設(shè)OA所在漸近線的方程為y=kx(k>0),
∴A點(diǎn)坐標(biāo)可表示為A(x0,kx0)(x0>0)
∴ = ,即A( , ),
∴AB的一個(gè)三分點(diǎn)坐標(biāo)為( , ),
該點(diǎn)在橢圓C1上,∴ ,即 =1,得k=2 ,
即 =2 ,∴c= =3a,
∴離心率e= .
故選:D.
【考點(diǎn)精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(Ⅲ)將函數(shù)的圖象向右平移()個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱(chēng),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量y(單位:千克)與銷(xiāo)售價(jià)格x(單位:元/千克)滿(mǎn)足關(guān)系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷(xiāo)售的價(jià)格為5元/千克時(shí),每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格x的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并做出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒(méi)有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型① 與模型;② 作為產(chǎn)卵數(shù)y和溫度x的回歸方程來(lái)建立兩個(gè)變量之間的關(guān)系.
溫度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中 , ,zi=lnyi , ,
附:對(duì)于一組數(shù)據(jù)(μ1 , ν1),(μ2 , ν2),…(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計(jì)分別為: ,
(1)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下y關(guān)于x的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為30°C時(shí)的產(chǎn)卵數(shù).(C1 , C2 , C3 , C4與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計(jì)算分別為 .,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD為邊長(zhǎng)為2的菱形,G為AC與BD交點(diǎn),平面BED⊥平面ABCD,BE=2,AE=2 .
(Ⅰ)證明:BE⊥平面ABCD;
(Ⅱ)若∠ABC=120°,求直線EG與平面EDC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,且曲線 在點(diǎn) 處的切線斜率為-3.
(Ⅰ)求 單調(diào)區(qū)間;
(Ⅱ)求 的極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com