【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了60名男顧客和80名女顧客,每位顧客均對(duì)該商場(chǎng)的服務(wù)給出滿(mǎn)意或不滿(mǎn)意的評(píng)價(jià),得到下面不完整的列聯(lián)表:

滿(mǎn)意

不滿(mǎn)意

合計(jì)

男顧客

50

女顧客

50

合計(jì)

1)根據(jù)已知條件將列聯(lián)表補(bǔ)充完整;

2)能否有的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】1)列聯(lián)表見(jiàn)解析;(2)有的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異.

【解析】

1)根據(jù)已知條件將列聯(lián)表;

2)先計(jì)算出,再利用獨(dú)立性檢驗(yàn)得解.

解:(1)如表

滿(mǎn)意

不滿(mǎn)意

合計(jì)

男顧客

50

10

60

女顧客

50

30

80

合計(jì)

100

40

140

2,

,

故有的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知軸上的動(dòng)點(diǎn)(異于原點(diǎn)),點(diǎn)在圓上,且.設(shè)線(xiàn)段的中點(diǎn)為,當(dāng)點(diǎn)移動(dòng)時(shí),記點(diǎn)的軌跡為曲線(xiàn).

1)求曲線(xiàn)的方程;

2)當(dāng)直線(xiàn)與圓相切于點(diǎn),且點(diǎn)在第一象限.

)求直線(xiàn)的斜率;

)直線(xiàn)平行,交曲線(xiàn)于不同的兩點(diǎn)、.線(xiàn)段的中點(diǎn)為,直線(xiàn)與曲線(xiàn)交于兩點(diǎn)、,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類(lèi)社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國(guó)的區(qū)塊鏈企業(yè)數(shù)量逐年增長(zhǎng),居世界前列現(xiàn)收集我國(guó)近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號(hào)

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個(gè))

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i1,2,,n)的最小二乘法估計(jì)公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對(duì)數(shù)的底數(shù)),哪一個(gè)回歸方程類(lèi)型適宜預(yù)測(cè)未來(lái)幾年我國(guó)區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說(shuō)明理由)

2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點(diǎn)后第三位);

3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請(qǐng)甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場(chǎng)比賽有兩個(gè)公司參加,并決出勝負(fù);②每場(chǎng)比賽獲勝的公司與未參加此場(chǎng)比賽的公司進(jìn)行下一場(chǎng)的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場(chǎng),則本次比賽結(jié)束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請(qǐng)通過(guò)計(jì)算說(shuō)明,哪兩個(gè)公司進(jìn)行首場(chǎng)比賽時(shí),甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為正方形,,為等邊三角形,線(xiàn)段的中點(diǎn)為,若,則此四棱錐的外接球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P-ABCD的底面是正方形,底面ABCD,,E是側(cè)棱的中點(diǎn).

1)求異面直線(xiàn)AEPD所成的角;

2)求點(diǎn)B到平面ECD的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面, ,分別是的中點(diǎn).

1)證明:平面平面;

2)已知點(diǎn)在棱上且,求直線(xiàn)與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面PAD是等邊三角形,且平面平面ABCD,.

1AD上是否存在一點(diǎn)M,使得平面平面ABCD;若存在,請(qǐng)證明,若不存在,請(qǐng)說(shuō)明理由;

2)若的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面ABCD,,,,.

1)證明:;

2)求二面角的余弦值;

3)設(shè)Q為線(xiàn)段PD上的點(diǎn),且直線(xiàn)AQ和平面PAC所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的極大值點(diǎn);

2)當(dāng)時(shí),若過(guò)點(diǎn)存在3條直線(xiàn)與曲線(xiàn)相切,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案